Copyright © 2012 Lu-Ting Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Discrete cosine transform (DCT) and inverse DCT (IDCT) have been widely used in many image processing systems and real-time computation of nonlinear time series. In this paper, the unified DCT/IDCT algorithm based on the subband decompositions of a signal is proposed. It is derived from the data flow of subband decompositions with factorized coefficient matrices in a recursive manner. The proposed algorithm only requires (4(log2n)−1−1) and (4(log2n)−1−1)/3 multiplication time for n-point DCT and IDCT, with a single multiplier and a single processor, respectively. Moreover, the peak signal-to-noise ratio (PSNR) of the proposed algorithm outperforms the conventional DCT/IDCT. As a result, the subband-based approach to DCT/IDCT is preferable to the conventional approach in terms of computational complexity and system performance. The proposed reconfigurable architecture of linear array DCT/IDCT processor has been implemented by FPGA.