Singleton Bounds for Codes over Finite Rings
Keisuke Shiromoto
DOI: 10.1023/A:1008767703006
Abstract
Pages: 95–99
Keywords: code; QF ring; module; bound; support; weight
Full Text: PDF
References
1. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York, 1962.
2. A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Solé, “The Z4-linearity of Kerdock, Preparata, Goethals, and related codes,” IEEE Trans. Inform. Theory 40 (1994), 301-319.
3. M. Klemm, “ \ddot Uber die Identit\ddot at von MacWilliams f\ddot ur die Gewichtsfunktion von Codes,” Arch. Math. 49 (1987), 400-406.
4. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977.
5. K. Shiromoto, “A new MacWilliams type identity for linear codes,” Hokkaido Math. J. 25 (1996), 651-656.
6. T. Yoshida, “MacWilliams identities for linear codes with group action,” Kumamoto Math. J. 6 (1993), 29-45.
2. A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Solé, “The Z4-linearity of Kerdock, Preparata, Goethals, and related codes,” IEEE Trans. Inform. Theory 40 (1994), 301-319.
3. M. Klemm, “ \ddot Uber die Identit\ddot at von MacWilliams f\ddot ur die Gewichtsfunktion von Codes,” Arch. Math. 49 (1987), 400-406.
4. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977.
5. K. Shiromoto, “A new MacWilliams type identity for linear codes,” Hokkaido Math. J. 25 (1996), 651-656.
6. T. Yoshida, “MacWilliams identities for linear codes with group action,” Kumamoto Math. J. 6 (1993), 29-45.