Tactical Decompositions of Steiner Systems and Orbits of Projective Groups
Keldon Drudge
DOI: 10.1023/A:1026535809272
Abstract
Block's lemma states that the numbers m of point-classes and n of block-classes in a tactical decomposition of a 2-( v, k, ) design with b blocks satisfy m n m + b - v. We present a strengthening of the upper bound for the case of Steiner systems (2-designs with = 1), together with results concerning the structure of the block-classes in both extreme cases. Applying the results to the Steiner systems of points and lines of projective space PG( N, q), we obtain a complete classification of the groups inducing decompositions satisfying the upper bound; answering the analog of a question raised by Cameron and Liebler (P.J. Cameron and R.A. Liebler, Lin. Alg. Appl. 46 (1982), 91-102) (and still open).
Pages: 123–130
Keywords: tactical decompositions; partial spread; tightset; Steiner systems; projective group
Full Text: PDF
References
1. P.J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999.
2. P.J. Cameron and R.A. Liebler, “Tactical decompositions and orbits of projective groups,” Lin. Alg. Appl. 46 (1982), 91-102.
3. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin-Heidelberg, 1968.
4. K. Drudge, “Extremal sets in projective and polar spaces,” Ph.D. Thesis, University of Western Ontario, 1998.
5. D.G. Glynn, “On a set of lines of PG(3, q) corresponding to a maximal cap contained in the Klein quadric of PG(5, q),” Geom. Ded. 26 (1988), 273-280.
6. W.H. Haemers, Eigenvalue Techniques in Design Theory and Graph Theory, Mathematisch Centrum, Amsterdam,
1980. Mathematical Centre Tracts #121.
7. H. L\ddot uneburg, Translation Planes, Springer-Verlag, Berlin-Heidelberg, 1980.
8. S.E. Payne, “Tight pointsets in finite generalized quadrangles I,” Congressus Numerantium 60 (1987), 243-260; II, Congressus Numerantium 77 (1990), 31-41.
9. T. Penttila, “Collineations and configurations in projective spaces,” Ph.D. Thesis, Oxford University, 1985.
2. P.J. Cameron and R.A. Liebler, “Tactical decompositions and orbits of projective groups,” Lin. Alg. Appl. 46 (1982), 91-102.
3. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin-Heidelberg, 1968.
4. K. Drudge, “Extremal sets in projective and polar spaces,” Ph.D. Thesis, University of Western Ontario, 1998.
5. D.G. Glynn, “On a set of lines of PG(3, q) corresponding to a maximal cap contained in the Klein quadric of PG(5, q),” Geom. Ded. 26 (1988), 273-280.
6. W.H. Haemers, Eigenvalue Techniques in Design Theory and Graph Theory, Mathematisch Centrum, Amsterdam,
1980. Mathematical Centre Tracts #121.
7. H. L\ddot uneburg, Translation Planes, Springer-Verlag, Berlin-Heidelberg, 1980.
8. S.E. Payne, “Tight pointsets in finite generalized quadrangles I,” Congressus Numerantium 60 (1987), 243-260; II, Congressus Numerantium 77 (1990), 31-41.
9. T. Penttila, “Collineations and configurations in projective spaces,” Ph.D. Thesis, Oxford University, 1985.