ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups

Keldon Drudge

DOI: 10.1023/A:1026535809272

Abstract

Block's lemma states that the numbers m of point-classes and n of block-classes in a tactical decomposition of a 2-( v, k, lambda) design with b blocks satisfy m le n le m + b - v. We present a strengthening of the upper bound for the case of Steiner systems (2-designs with lambda = 1), together with results concerning the structure of the block-classes in both extreme cases. Applying the results to the Steiner systems of points and lines of projective space PG( N, q), we obtain a complete classification of the groups inducing decompositions satisfying the upper bound; answering the analog of a question raised by Cameron and Liebler (P.J. Cameron and R.A. Liebler, Lin. Alg. Appl. 46 (1982), 91-102) (and still open).

Pages: 123–130

Keywords: tactical decompositions; partial spread; tightset; Steiner systems; projective group

Full Text: PDF

References

1. P.J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999.
2. P.J. Cameron and R.A. Liebler, “Tactical decompositions and orbits of projective groups,” Lin. Alg. Appl. 46 (1982), 91-102.
3. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin-Heidelberg, 1968.
4. K. Drudge, “Extremal sets in projective and polar spaces,” Ph.D. Thesis, University of Western Ontario, 1998.
5. D.G. Glynn, “On a set of lines of PG(3, q) corresponding to a maximal cap contained in the Klein quadric of PG(5, q),” Geom. Ded. 26 (1988), 273-280.
6. W.H. Haemers, Eigenvalue Techniques in Design Theory and Graph Theory, Mathematisch Centrum, Amsterdam,
1980. Mathematical Centre Tracts #121.
7. H. L\ddot uneburg, Translation Planes, Springer-Verlag, Berlin-Heidelberg, 1980.
8. S.E. Payne, “Tight pointsets in finite generalized quadrangles I,” Congressus Numerantium 60 (1987), 243-260; II, Congressus Numerantium 77 (1990), 31-41.
9. T. Penttila, “Collineations and configurations in projective spaces,” Ph.D. Thesis, Oxford University, 1985.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition