Uniformly Packed Codes and More Distance Regular Graphs from Crooked Functions
E.R. van Dam
and D. Fon-Der-Flaass
DOI: 10.1023/A:1026583725202
Abstract
Let V and W be n-dimensional vector spaces over GF(2). A function Q : V Q(0) = 0; Q( x) + Q( y) + Q( z) + Q( x + y + z) \textonesuperior 0\text for any three distinct x, y, z; Q( x) + Q( y) + Q( z) + Q( x + a) + Q( y + a) + Q( z + a) \textonesuperior 0\text if a \textonesuperior 0\text ( x, y, z\text arbitrary). \begin{gathered} Q(0) = 0; \hfill \\ Q(x) + Q(y) + Q(z) + Q(x + y + z) \ne 0{\text{ for any three distinct }}x,y,z; \hfill \\ Q(x) + Q(y) + Q(z) + Q(x + a) + Q(y + a) + Q(z + a) \ne 0{\text{ if }}a \ne 0{\text{ }}(x,y,z{\text{ arbitrary}}). \hfill \\ \end{gathered}
Pages: 115–121
Keywords: crooked function; distance-regular graph; association scheme; uniformly packed code
Full Text: PDF
References
1. T. Bending and D. Fon-Der-Flaass, “Crooked functions, bent functions, and distance regular graphs,” Electronic Journal of Combinatorics 5 (R34) (1998).
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
3. D. de Caen and E.R. van Dam, “Association schemes related to Kasami codes and Kerdock sets,” Designs, Codes and Cryptography, to appear.
4. D. de Caen, R. Mathon, and G.E. Moorhouse, “A family of antipodal distance-regular graphs related to the classical Preparata codes,” J. Alg. Combin. 4 (1995), 317-327.
5. C. Carlet, P. Charpin, and V. Zinoviev, “Codes, bent functions and permutations suitable for DES-like cryptosystems,” Designs, Codes and Cryptography 15 (1998), 125-156.
6. J.H. van Lint, Introduction to Coding Theory, 3rd edition, Springer-Verlag, 1998.
7. H.C.A. van Tilborg, “Uniformly packed codes,” Thesis, Eindhoven University of Technology, 1976.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
3. D. de Caen and E.R. van Dam, “Association schemes related to Kasami codes and Kerdock sets,” Designs, Codes and Cryptography, to appear.
4. D. de Caen, R. Mathon, and G.E. Moorhouse, “A family of antipodal distance-regular graphs related to the classical Preparata codes,” J. Alg. Combin. 4 (1995), 317-327.
5. C. Carlet, P. Charpin, and V. Zinoviev, “Codes, bent functions and permutations suitable for DES-like cryptosystems,” Designs, Codes and Cryptography 15 (1998), 125-156.
6. J.H. van Lint, Introduction to Coding Theory, 3rd edition, Springer-Verlag, 1998.
7. H.C.A. van Tilborg, “Uniformly packed codes,” Thesis, Eindhoven University of Technology, 1976.