ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Uniformly Packed Codes and More Distance Regular Graphs from Crooked Functions

E.R. van Dam and D. Fon-Der-Flaass

DOI: 10.1023/A:1026583725202

Abstract

Let V and W be n-dimensional vector spaces over GF(2). A function Q : V Q(0) = 0; Q( x) + Q( y) + Q( z) + Q( x + y + z) \textonesuperior  0\text for any three distinct x, y, z; Q( x) + Q( y) + Q( z) + Q( x + a) + Q( y + a) + Q( z + a) \textonesuperior  0\text if a \textonesuperior  0\text ( x, y, z\text arbitrary). \begin{gathered} Q(0) = 0; \hfill \\ Q(x) + Q(y) + Q(z) + Q(x + y + z) \ne 0{\text{ for any three distinct }}x,y,z; \hfill \\ Q(x) + Q(y) + Q(z) + Q(x + a) + Q(y + a) + Q(z + a) \ne 0{\text{ if }}a \ne 0{\text{ }}(x,y,z{\text{ arbitrary}}). \hfill \\ \end{gathered}

Pages: 115–121

Keywords: crooked function; distance-regular graph; association scheme; uniformly packed code

Full Text: PDF

References

1. T. Bending and D. Fon-Der-Flaass, “Crooked functions, bent functions, and distance regular graphs,” Electronic Journal of Combinatorics 5 (R34) (1998).
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
3. D. de Caen and E.R. van Dam, “Association schemes related to Kasami codes and Kerdock sets,” Designs, Codes and Cryptography, to appear.
4. D. de Caen, R. Mathon, and G.E. Moorhouse, “A family of antipodal distance-regular graphs related to the classical Preparata codes,” J. Alg. Combin. 4 (1995), 317-327.
5. C. Carlet, P. Charpin, and V. Zinoviev, “Codes, bent functions and permutations suitable for DES-like cryptosystems,” Designs, Codes and Cryptography 15 (1998), 125-156.
6. J.H. van Lint, Introduction to Coding Theory, 3rd edition, Springer-Verlag, 1998.
7. H.C.A. van Tilborg, “Uniformly packed codes,” Thesis, Eindhoven University of Technology, 1976.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition