ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Classifying Arc-Transitive Circulants of Square-Free Order

Caiheng Li , Dragan Marušič and Joy Morris

DOI: 10.1023/A:1011989913063

Abstract

A circulant is a Cayley graph of a cyclic group. Arc-transitive circulants of square-free order are classified. It is shown that an arc-transitive circulant å[[ `( K)] b ] \sum {[\bar K_b ]} , or the deleted lexicographic S[[ `( K)] b ] - b S Σ[\bar K_b ] - bΣ , where n = bm and Sgr is an arc-transitive circulant, or Gamma is a normal circulant, that is, Aut Gamma has a normal regular cyclic subgroup.

Pages: 145–151

Keywords: circulant graph; arc-transitive graph; square-free order; cyclic group; primitive group; imprimitive group

Full Text: PDF

References

1. B. Alspach, M.D.E. Conder, D. Maru\check si\check c, and M.Y. Xu, “A classification of 2-arc-transitive circulants,” J. Alg. Combin. 5 (1996), 83-86.
2. N. Biggs, Algebraic Graph Theory, Cambridge University Press, London, New York, 1992.
3. J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
4. C. Godsil, “On the full automorphism group of a graph,” Combinatorica 1 (1981), 243-256.
5. W. Kantor, “Classification of 2-transitive symmetric designs,” Graphs Combin. 1 (1985), 165-166.
6. G.O. Sabidussi, “Vertex-transitive graphs,” Monatsh. Math. 68 (1964), 426-438.
7. M. Suzuki, Group Theory I, Springer-Verlag, Berlin, New York, 1982.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition