Classifying Arc-Transitive Circulants of Square-Free Order
Caiheng Li
, Dragan Marušič
and Joy Morris
DOI: 10.1023/A:1011989913063
Abstract
A circulant is a Cayley graph of a cyclic group. Arc-transitive circulants of square-free order are classified. It is shown that an arc-transitive circulant å[[ `( K)] b ] \sum {[\bar K_b ]} , or the deleted lexicographic S[[ `( K)] b ] - b S Σ[\bar K_b ] - bΣ , where n = bm and is an arc-transitive circulant, or is a normal circulant, that is, Aut has a normal regular cyclic subgroup.
Pages: 145–151
Keywords: circulant graph; arc-transitive graph; square-free order; cyclic group; primitive group; imprimitive group
Full Text: PDF
References
1. B. Alspach, M.D.E. Conder, D. Maru\check si\check c, and M.Y. Xu, “A classification of 2-arc-transitive circulants,” J. Alg. Combin. 5 (1996), 83-86.
2. N. Biggs, Algebraic Graph Theory, Cambridge University Press, London, New York, 1992.
3. J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
4. C. Godsil, “On the full automorphism group of a graph,” Combinatorica 1 (1981), 243-256.
5. W. Kantor, “Classification of 2-transitive symmetric designs,” Graphs Combin. 1 (1985), 165-166.
6. G.O. Sabidussi, “Vertex-transitive graphs,” Monatsh. Math. 68 (1964), 426-438.
7. M. Suzuki, Group Theory I, Springer-Verlag, Berlin, New York, 1982.
2. N. Biggs, Algebraic Graph Theory, Cambridge University Press, London, New York, 1992.
3. J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
4. C. Godsil, “On the full automorphism group of a graph,” Combinatorica 1 (1981), 243-256.
5. W. Kantor, “Classification of 2-transitive symmetric designs,” Graphs Combin. 1 (1985), 165-166.
6. G.O. Sabidussi, “Vertex-transitive graphs,” Monatsh. Math. 68 (1964), 426-438.
7. M. Suzuki, Group Theory I, Springer-Verlag, Berlin, New York, 1982.