ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On the Various Realizations of the Basic Representation of A n - 1(1) and the Combinatorics of Partitions

Séverine Leidwanger

DOI: 10.1023/A:1011985828993

Abstract

The infinite dimensional Lie algebra scircl n = A n-1 (1) can be realized in several ways as an algebra of differential operators. The aim of this note is to show that the intertwining operators between the realizations of scircl n corresponding to all partitions of n can be described very simply by using combinatorial constructions.

Pages: 133–144

Keywords: Lie algebras; representation theory; combinatorics of partitions; symmetric functions

Full Text: PDF

References

1. I.B. Frenkel and V.G. Kac, “Basic representations of affine Lie algebras and dual resonance models,” Invent. Math. 62 (1980), 23-66. LEIDWANGER
2. G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison Wesley, Reading, MA, 1981.
3. V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge, UK, 1990.
4. F. ten Kroode and J. Van de Leur, “Bosonic and fermionic realizations of the affine algebra \hat gln,” Commun. Math. Phys. 137 (1991), 67-107.
5. V.G. Kac and D.H. Peterson, “112 Constructions of the basic representation of the loop group of E8,” Proceedings of the Conference “Anomalies, geometry, topology” Argonne,
1985. World Scientific, Singapore, 1985, pp. 276-298.
6. V.G. Kac, D.A. Kazhdan, J. Lepowsky, and R.L. Wilson, “Realization of the basic representations of the euclidean Lie algebras,” Adv. Math. 42 (1981), 83-112.
7. V.G. Kac and A.K. Raina, “Bombay lectures on highest weight representations of infinite dimensional Lie algebras,” World Scientific, Singapore, 1987. ( (
8. S. Leidwanger, “Basic representations of A 1) and A 2) and the combinatorics of partitions,” Adv. Math. 141 n - 1 2n (1999), 119-154.
9. I.G. Macdonald, Symmetric Functions and Hall polynomials, 2nd ed., Oxford, UK, 1995.
10. T. Muir, A Treatise on the Theory of Determinants, Macmillan, London, 1882.
11. J.B. Olsson, “Combinatorics and Representations of Finite Groups,” Vorlesungen aus dem Fachbereich Mathematik der Universitat GH Essen Heft 20 (1993).




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition