ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A Generalization of the Kostka-Foulkes Polynomials

Anatol N. Kirillov and Mark Shimozono

DOI: 10.1023/A:1013269131974

Abstract

Combinatorial objects called rigged configurations give rise to q-analogues of certain Littlewood-Richardson coefficients. The Kostka-Foulkes polynomials and two-column Macdonald-Kostka polynomials occur as special cases. Conjecturally these polynomials coincide with the Poincaré polynomials of isotypic components of certain graded GL( n)-modules supported in a nilpotent conjugacy class closure in gl( n).

Pages: 27–69

Keywords: generalized Kostka polynomials; rigged configurations; littewood-Richardson tableaux; catabolizable tableaux

Full Text: PDF

References

1. A. Broer, “Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety,” in Lie Theory and Gometry, Progr. Math., Vol. 123, Birkh\ddot auser Boston, Boston, MA, 1994, pp. 1-19.
2. A. Broer, personal communication, 1995.
3. A.D. Berenstein and A.N. Kirillov, “Groups generated by involutions, Gelfand-Tsetlin patterns and combinatorics of Young tableaux,” St. Petersburg Math. J. 7 (1996), 77-127.
4. L.M. Butler, “Combinatorial properties of partially ordered sets associated with partitions and finite Abelian groups,” Ph.D. Thesis, MIT, May 1986.
5. I.F. Donin, “Multiplicities of Sn modules and the Index and Charge of tableaux,” Func. Anal. App. 27 (1994), 280-282.
6. W. Fulton, “Young tableaux,” London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997.
7. S. Fishel, “Statistics for special q, t-Kostka polynomials,” Proc. Amer. Math. Soc. 123 (1995), 2961-2969. KIRILLOV AND SHIMOZONO
8. S.V. Fomin and C. Greene, “A Littlewood-Richardson miscellany,” Eur. J. Combin. 14 (1993), 191-212.
9. R.K. Gupta, “Generalized exponents via Hall-Littlewood symmetric functions,” Bull. AMS 16 (1987), 287- 291.
10. A.N. Kirillov, “Bethe ansatz and combinatorics of Young tableaux” Ph.D. Thesis, LOMI, Leningrad, 1987, (in Russian).
11. A.N. Kirillov, “On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers,” J. Geom. Phys. 5 (1988), 365-389.
12. A.N. Kirillov, “Ubiquity of Kostka polynomials,” in Proceedings of the Nagoya 1999 International Workshop on Physics and Combinatorics (Physics and Combinatorics 1999) Nagoya University, August 23-27, 1999, pp. 85-200, World Scientific, Singapore, 2001.
13. A.N. Kirillov, “Combinatorics of Young tableaux and configurations,” Proceedings of the St. Petersburg Mathematical Society, Vol. VII, pp. 17-98, Amer. Math. Soc. Transl. Ser. 2, Vol. 203, Amer. Math. Soc., Providence, RI, 2001.
14. J. Klimek, W. Kraśkiewicz, M. Shimozono, and J. Weyman, “On the Grothendieck group of modules supported in a nilpotent orbit in the Lie algebra gl(n),” J. Pure Appl. Algebra 153 (2000), 237-261.
15. A.N. Kirillov, A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Séries génératrices pour les tableaux de dominos,” C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 395-400.
16. A.N. Kirillov, A. Schilling, and M. Shimozono, “A bijection between Littlewood-Richardson tableaux and rigged configurations,” Selecta Math. N. S., to appear (math.CO/9901037).
17. D.E. Knuth, “Permutations, matrices, and generalized Young tableaux,” Pacific J. Math. 34 (1970), 709-727.
18. A.N. Kirillov and N.Y. Reshetikhin, “The Bethe Ansatz and the combinatorics of Young tableaux,” J. Soviet Math. 41 (1988), 925-955.
19. A. Lascoux, “Cyclic permutations on words, tableaux and harmonic polynomials,” Proc. of the Hyderabad Conference on Algebraic Groups, 1989, pp. 323-347, Manoj Prakashan, Madras, 1991.
20. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties,” J. Math. Phys. 38 (1997), 1041-1068.
21. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Crystal graphs and q-analogues of weight multiplicities for root systems of type An,” Lett. Math. Phys. 39 (1995), 359-374.
22. D.E. Littlewood and A.R. Richardson, “Group characters and algebra,” Phil. Trans. Royal Soc. London Ser. A 233 (1934), 99-141.
23. A. Lascoux and M.-P. Sch\ddot utzenberger, “Sur une conjecture de H. O. Foulkes,” C. R. Acad. Sc. Paris, 286A (1978), 323-324.
24. A. Lascoux and M.P. Sch\ddot utzenberger, “Croissance des polyn\hat omes de Foulkes/Green,” C. R. Acad. Sc. Paris 288A (1979), 95-98.
25. A. Lascoux and M.P. Sch\ddot utzenberger, “Le mono\ddot ıde plaxique,” in Noncommutative Structures in Algebra and Geometric Combinatorics, A. de Luca (Ed.), Quaderni della Ricerca Scientifica del C. N. R., Roma, 1981, pp. 129-156.
26. B. Leclerc and J.-Y. Thibon, “Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials,” Adv. Studies in Pure Math. 28 (2000), 155-220.
27. I.G. MacDonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1979.
28. I.G. MacDonald, Notes on Schubert Polynomials, LACIM, Montréal, 1991.
29. A.O. Morris, “The characters of the group GL(n, q),” Math. Zeitschr. 81 (1963), 112-123. ( (
30. M. Okado, A. Schilling, and M. Shimozono, “Virtual crystals and fermionic formulas of type D 2) , A 2), and n+1 2n ( C 1) n ,” preprint math.QA/0105017, submitted.
31. V. Reiner and M. Shimozono, “Specht series for column convex diagrams,” J. Algebra, 174 (1995), 489-522.
32. J.B. Remmel and R. Whitney, “Multiplying Schur functions,” J. Algorithms 5 (1984), 471-487.
33. B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Wadsworth & Brooks/Cole, Pacific Grove, 1991.
34. C. Schensted, “Longest increasing and decreasing sequences,” Canad. J. Math. 13 (1961), 179-191.
35. A. Schilling and S.O. Warnaar, “Inhomogenous lattice paths, generalized Kostka polynomials and An - 1 supernomials,” Commun. Math. Phys. 202 (1999), 359-401.
36. M. Shimozono, “Littlewood-Richardson rules for ordinary and projective representations of symmetric groups,” Ph.D. Thesis, University of California, San Diego, September 1991.
37. M. Shimozono, “A cyclage poset structure for Littlewood-Richardson tableaux,” Europ. J. Combin. 22 (2001), 365-393.
38. M. Shimozono, “Multi-atoms and monotonicity of generalized Kostka polynomials,” Europ. J. Combin. 22 (2001), 395-414.
39. M. Shimozono, “Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties,” preprint math.QA/9804039.
40. J. Stembridge, “Some particular entries of the two-parameter Kostka matrix,” Proc. Amer. Math. Soc. 121 (1994), 367-373.
41. M. Shimozono and J. Weyman, “Graded characters of modules supported in the closure of a nilpotent conjugacy class,” European J. Combin. 21 (2000), 257-288.
42. D. Stanton and D. White, “A Schensted algorithm for rim hook tableaux,” J. Combin. Th. Ser. A 40 (1985), 211-247.
43. J. Weyman, “The equations of conjugacy classes of nilpotent matrices,” Invent. Math. 98 (1989), 229-245.
44. D.E. White, “Some connections between the Littlewood-Richardson rule and the construction of Schensted,” J. Comb. Th. Ser. A 30 (1981), 237-247.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition