ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Designs in Grassmannian Spaces and Lattices

Christine Bachoc , Renaud Coulangeon2 and Gabriele Nebe3

2Laboratoire A2X, Université Bordeaux I, 351, cours de la Libération, 33405 Talence, France

DOI: 10.1023/A:1020826329555

Abstract

We introduce the notion of a t-design on the Grassmann manifold G m, n \mathcal{G}_{m,n} of the m-subspaces of the Euclidean space \mathbb R \mathbb{R} n . It generalizes the notion of antipodal spherical design which was introduced by P. Delsarte, J.-M. Goethals and J.-J. Seidel. We characterize the finite subgroups of the orthogonal group which have the property that all its orbits are t-designs. Generalizing a result due to B. Venkov, we prove that, if the minimal m-sections of a lattice L form a 4-design, then L is a local maximum for the Rankin function gamma n,m .

Pages: 5–19

Keywords: lattice; Grassmann manifold; orthogonal group; zonal function

Full Text: PDF

References

1. C. Bachoc and B. Venkov, “Modular forms, lattices and spherical designs,” in “Réseaux euclidiens, “designs” sphériques et groupes,” in L'Enseignement Mathématique J. Martinet ( Éd.), Monographie no. 37, Gen`eve (2001), to appear.
2. J.H. Conway, R.H. Hardin, and N.J.A. Sloane, “Packing lines, planes, etc., packings in Grassmannian spaces,” Experimental Mathematics 5 (1996), 139-159.
3. R. Coulangeon,“Réseaux k-extr\hat emes,” Proc. London Math. Soc. 73 (3) (1996), 555-574.
4. P. Delsarte, J.M. Goethals, and J.J. Seidel, “Spherical codes and designs,” Geom. Dedicata 6 (1977), 363-388.
5. W. Fulton and J. Harris, Representation Theory, a First Course, GTM, Vol. 129, Springer, 1991.
6. G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd edn., John Hopkins University Press, 1989.
7. R. Goodman and N.R. Wallach, Representations and Invariants of the Classical Groups, Encyclopedia of Mathematics and its Applications, Vol. 68, Cambridge University Press, 1998.
8. A.T. James and A.G. Constantine, “Generalized Jacobi polynomials as spherical functions of the Grassmann manifold,” Proc. London Math. Soc. 29(3) (1974), 174-192.
9. W. Lempken, B. Schr\ddot oder, and P.H. Tiep, “Symmetric squares, spherical designs and lattice minima,” J. Algebra 240 (2001), 185-208.
10. R.A. Rankin, “On positive definite quadratic forms,” J. London Math. Soc. 28 (1953), 309-314.
11. B. Venkov, “Even unimodular extremal lattices,” Proc. Steklov Inst. Math. 165 (1984), 47-52.
12. B. Venkov, “Réseaux et designs sphériques,” in “Réseaux euclidiens, “designs” sphériques et groupes,” J. Martinet ( Éd.), L'Enseignement Mathématique, Monographie no 37, Gen`eve (2001), to appear.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition