ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Character Formulas for q-Rook Monoid Algebras

Momar Dieng , Tom Halverson2 and Vahe Poladian3

2Department of Mathematics and Computer Science, Macalester College, Saint Paul, Minnesota 55105, USA

DOI: 10.1023/A:1022939912459

Abstract

The q-rook monoid R n( q) is a semisimple U q \mathfrak g\mathfrak l( r) U_q {\mathfrak{g}}{\mathfrak{l}}(r) to compute a Frobenius formula, in the ring of symmetric functions, for the irreducible characters of R n( q). We then derive a recursive Murnaghan-Nakayama rule for these characters, and we use Robinson-Schensted-Knuth insertion to derive a Roichman rule for these characters. We also define a class of standard elements on which it is sufficient to compute characters. The results for R n( q) specialize when q = 1 to analogous results for R n.

Pages: 99–123

Keywords: rook monoid; character; Hecke algebra; symmetric functions

Full Text: PDF

References

1. A. Cantrell, T. Halverson, and B. Miller, “Robinson-Schensted-Knuth insertion and characters of cyclotomic Hecke algebras,” J. Combinatorial Theory, A 99 (2002), 17-31.
2. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994.
3. C. Curtis and I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, Vol. I, Wiley, New York, 1981.
4. C. Curtis and I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, Vol. II, Wiley, New York, 1987.
5. F.G. Frobenius, \ddot Uber die Charaktere der symmetrischen Gruppe, Sitzungberichte der K\ddot oniglich Preussischen Akademie der Wissenschaften zu Berlin (1900), 516-534 (Ges. Abhandlungen 3, 335-348).
6. C. Grood, “A Spect module analog for the rook monoid,” Electronic J. Combinatorics 9(1) (2002).
7. T. Halverson and A. Ram, “Characters of algebras containing a Jones basic construction: The Temperley-Lieb, Okada, Brauer, and Birman-Wenzl algebras,” Adv. Math. 116 (1995), 263-321.
8. T. Halverson and A. Ram, “q-rook monoid algebras, Hecke algebras, and Schur-Weyl duality,” Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001), 224-250.
9. T. Halverson, “Characters of the partition algebras,” J. Algebra 238 (2001), 502-533.
10. T. Halverson, “Representations of the q-rook monoid,” J. Algebra, in press.
11. M. Jimbo, “A q-analog of U (gl(N + 1)), Hecke algebra, and the Yang-Baxter equation,” Lett. Math. Phus. 11 (1986), 247-252.
12. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, New York, 1995.
13. W.D. Munn, “Matrix representations of semigroups,” Proc. Cambridge Philos. Soc. 53 (1957), 5-12.
14. W.D. Munn, “The characters of the symmetric inverse semigroup,” Proc. Cambridge Philos. Soc. 53 (1957), 13-18.
15. A. Ram, “A Frobenius formula for the characters of the Hecke Algebras,” Invent. Math. 106 (1991), 461-488.
16. A. Ram, “An elementary proof of Roichman's rule for irreducible characters of Iwahori-Hecke algebras of type A,” Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996), pp. 335-342, Progr. Math., 161, Birkhuser Boston, Boston, MA, 1998.
17. Y. Roichman, “A recursive rule for Kazhdan-Lusztig characters,” Adv. Math. 129 (1997), 25-45.
18. L. Solomon, “The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field,” Geom. Dedicata 36 (1990), 15-49.
19. L. Solomon, “Representations of the rook monoid,” J. Algebra, 256 (2002), 309-342.
20. L. Solomon, “The Iwahori algebra of Mn(Fq ), a presentation and a representation on tensor space,” J. Algebra, in press.
21. B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer-Verlag, New York, 2001.
22. H. Wenzl, “On the structure of Brauer's centralizer algebras,” Ann. Math. 128 (1988), 173-193.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition