ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Taut Distance-Regular Graphs of Odd Diameter

Mark S. MacLean
University of North Carolina Asheville NC 28804 USA

DOI: 10.1023/A:1022926629298

Abstract

Let _boxclose _i - _i - 1 = , = \begin{gathered} \frac{{σ_{i + 1} - ασ}}{{σσ_i - σ_{i - 1} }} = \frac{{βρ_i - ρ_{i - 1} }}{{ρρ_i - ρ_{i - 1} }}, \hfill \\ \frac{{ρ_{i + 1} - βρ_i }}{{ρρ_i - ρ_{i - 1} }} = \frac{{ασ_i - σ_{i - 1} }}{{σσ_i - σ_{i - 1} }} \hfill \\ \end{gathered}
for 1 le i le D - 1, where sgr = sgr 1, rgr = rgr 1. Using these equations, we recursively obtain sgr 0, sgr 1, ..., sgr D and rgr 0, rgr 1, ..., rgr D in terms of the four real scalars sgr, rgr, agr, beta. From this we obtain all intersection numbers of Gamma in terms of sgr, rgr, agr, beta. We showed in an earlier paper that the pair E 1, E d is taut, where d = ( D - 1)/2. Applying our results to this pair, we obtain the intersection numbers of Gamma in terms of k, mgr, theta 1, theta d, where mgr denotes the intersection number c 2. We show that if Gamma is taut and D is odd, then Gamma is an antipodal 2-cover.

Pages: 125–147

Keywords: distance-regular graph; association scheme; bipartite graph; tight graph; taut graph

Full Text: PDF

References

1. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
3. B. Curtin, “2-homogeneous bipartite distance-regular graphs,” Discrete Math. 187 (1998), 39-70.
4. G. Dickie and P. Terwilliger, “Dual bipartite Q-polynomial distance-regular graphs,” Europ. J. Combin. 17 (1996), 613-623.
5. C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
6. A. Juri\check sić and J. Koolen, “1-homogeneous graphs with Cocktail Party μ-graphs,” J. Alg. Combin., in press.
7. A. Juri\check sić and J. Koolen, “Krein parameters and antipodal tight graphs with diameter 3 and 4,” Discrete Math. 244 (2002), 181-202.
8. A. Juri\check sić and J. Koolen, “Nonexistence of some antipodal distance-regular graphs of diameter four,” Europ. J. Combin. 21 (2000), 1039-1046.
9. A. Juri\check sić and J. Koolen, “A local approach to 1-homogeneous graphs,” Designs, Codes, and Cryptography 21 (2000), 127-147.
10. A. Juri\check sić, J. Koolen, and P. Terwilliger, “Tight distance-regular graphs with small diameter,” University of Ljubljana Preprint Series 36 (621), 1998.
11. A. Juri\check sić, J. Koolen, and P. Terwilliger, “Tight distance-regular graphs,” J. Alg. Combin. 12 (2000), 163-197.
12. M. MacLean, “An inequality involving two eigenvalues of a bipartite distance-regular graph,” Discrete Math. 225 (2000), 193-216.
13. K. Nomura, “Homogeneous graphs and regular near polygons,” J. Combin. Theory Ser. B 60 (1994), 63-71.
14. K. Nomura, “Spin models on bipartite distance-regular graphs,” J. Combin. Theory Ser. B 64 (1995), 300-313.
15. A. Pascasio, “An inequality in character algebras,” Discrete Math., in press.
16. A. Pascasio, “An inequality on the cosines of a tight distance-regular graph,” Linear Algebra Appl. 325 (2001), 147-159.
17. A. Pascasio, “Tight distance-regular graphs and the Q-polynomial property,” Graphs Combin. 17 (2001), 149-169.
18. A. Pascasio, “Tight graphs and their primitive idempotents,” J. Alg. Combin. 10 (1999), 47-59.
19. M. Tomiyama, “A note on the primitive idempotents of distance-regular graphs,” Discrete Math. 240 (2001), 281-294.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition