ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Schensted-Type Correspondences and Plactic Monoids for Types B n and D n

Cédric Lecouvey

DOI: 10.1023/A:1025154930381

Abstract

We use Kashiwara's theory of crystal bases to study plactic monoids for U q( so 2 n+1) and U q( so 2 n ). Simultaneously we describe a Schensted type correspondence in the crystal graphs of tensor powers of vector and spin representations and we derive a Jeu de Taquin for type B from the Sheats sliding algorithm.

Pages: 99–133

Keywords: combinatorics; quantum algebra; representation theory

Full Text: PDF

References

1. C. De Concini, “Symplectic standard tableaux,” Adv. in Math. 34 (1979), 1-27.
2. E. Date, M. Jimbo, and T. Miwa, “Representations of Uq (gl(n, C)) at q = 0 and the Robinson-Schensted correspondence,” in Physics and Mathematic of Strings, L. Brink, D. Friedman and A.M. Polyakov (Eds.), Word Scientific, Teaneck, NJ, 1990, pp. 185-211.
3. W. Fulton, Young Tableaux, London Mathematical Society, Student Text 35.
4. M. Kashiwara and T. Nakashima, “Crystal graphs for representations of the q-analogue of classical Lie algebras,” J. Algebra 165 (1994), 295-345.
5. M. Kashiwara, “On crystal bases,” in Canadian Mathematical Society, Conference Proceedings, 1995, Vol. 16.
6. M. Kashiwara, “Similarity of crystal bases,” AMS Contemporary Math. 194 (1996), 177-186.
7. R.C. King, “Weight multiplicities for the classical groups,” Lectures Notes in Physics 50 (New York; Springer, 1975), 490-499.
8. A. Lascoux, B. Leclerc, and J.Y. Thibon, “Crystal graph and q-analogues of weight multiplicities for the roots system A* n,” Lett. Math. Phys. 35 (1994), 359-374.
9. A. Lascoux and M.P. Sch\ddot utzenberger, “Le mono\ddot ıde plaxique,” in Non Commutative Structures in Algebra and Geometric Combinatorics, A. de Luca (Ed.), Quaderni della Ricerca Scientifica del C.N.R., Roma, 1981.
10. C. Lecouvey, “Schensted-type correspondence, plactic monoid and Jeu de Taquin for type Cn,” J. Algebra (to appear).
11. C. Lecouvey, “Algorithmique et combinatoire des alg`ebres enveloppantes quantiques de type classique,” Th`ese, Université de caen, 2001.
12. P. Littelmann, “A plactic algebra for semisimple Lie algebras,” Adv. in Math. 124 (1996), 312-331.
13. P. Littelmann, “Crystal graph and Young tableaux,” J. Algebra 175 (1995), 65-87.
14. P. Littelmann, “A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras,” Inv. Math. 116 (1994), 329-346.
15. T. Nakashima, “Crystal base and a generalization of the Littelwood-Richardson rule for the classical Lie algebras,” Comm. Math. Phys. 154 (1993), 215-243.
16. J.T. Sheats, “A symplectic jeu de taquin bijection between the tableaux of King and of De Concini,” Trans. A.M.S. 351(7) (1999), 3569-3607.
17. S. Sundaran, “Orthogonal tableaux and an insertion scheme for SO2n+1,” J. Combin. Theory, Ser. A 53 (1990), 239-256.
18. S. Sundaram, “Tableaux in the representation theory of the classical groups,” IMA. Volumes in Mathematics and its Applications 19 (Springer-Verlag, 1990).




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition