ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Ambient Spaces of Dimensional Dual Arcs

Satoshi Yoshiara

DOI: 10.1023/B:JACO.0000022564.51008.63

Abstract

A d-dimensional dual arc in PG( n, q) is a higher dimensional analogue of a dual arc in a projective plane. For every prime power q other than 2, the existence of a d-dimensional dual arc ( d ge 2) in PG( n, q) of a certain size implies n le d( d + 3)/2 (Theorem 1). This is best possible, because of the recent construction of d-dimensional dual arcs in PG( d( d + 3)/2, q) of size sum d-1 i=0 q i, using the Veronesean, observed first by Thas and van Maldeghem (Proposition 7). Another construction using caps is given as well (Proposition 10).

Pages: 5–23

Keywords: dual arc; dual hyperoval; Veronesean

Full Text: PDF

References

1. R.C. Bose and R. Burton, “A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes,” J. Combin. Theory 1 (1966), 96-104.
2. B. Cooperstein and J.A. Thas, “On generalized k-arcs in P G(2n, q),” Ann. Combin. 5 (2001), 141-152.
3. A. Del Fra, “On d-dimensional dual hyperovals,” Geometriae Dedicata 79 (2000), 157-178.
4. J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Oxford University Press, 1993.
5. C. Huybrechts, “Dimensional dual hyperovals in projective spaces and c.AG* geometries,” Discrete Math. 255 (2002), 193-223.
6. C. Huybrechts and A. Pasini, “Flag-transitive extensions of dual affine spaces,” Contrib. Algebra Geom. 40 (1999), 503-532.
7. A. Pasini and S. Yoshiara, “On a new family of flag-transitive semibiplanes,” European J. Combin. 22 (2001), 529-545.
8. A. Pasini and S. Yoshiara, “New distance regular graphs arising from dimensional dual hyperovals,” European J. Combin. 22 (2001), 547-560.
9. J.A. Thas and H. van Maldeghem, “Characterizations of the finite quadric Veroneseans V2n n ,” Quart. J. Math. Oxford Ser. 2.
10. J.A. Thas and H. van Maldeghem, “Characterizations of the finite quadric and Hermitian Veroneseans over finite fields,” J. Geom. 76 (2003), 282-293.
11. S. Yoshiara, “A new family of d-dimensional dual hyperovals in P G(2d + 1, 2),” European J. Combin. 20 (1999), 489-503.
12. S. Yoshiara, “On a family of planes of a polar space,” European J. Combin. 22 (2001), 107-118.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition