ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Higher Power Residue Codes and the Leech Lattice

Mehrdad Ahmadzadeh Raji
Department of Mathematical Sciences University of Exeter Exeter EX4 4QE UK

DOI: 10.1007/s10801-005-6279-4

Abstract

We shall consider higher power residue codes over the ring Z 4. We will briefly introduce these codes over Z 4 and then we will find a new construction for the Leech lattice. A similar construction is used to construct some of the other lattices of rank 24.

Pages: 39–53

Keywords: keywords self-dual code; even unimodular lattice; hensel lifting

Full Text: PDF

References

1. W. A. Adkins and S.H. Weintraub, Algebra, Springer Verlag, New York, 1992.
2. A. Bonnecaze, P. Solé, and A.R. Calderbank, “Quaternary quadratic residue codes and unimodular lattices,” IEEE Trans. Inform. theory 41(2) (1995).
3. R. Chapman, “Higher power residue codes,” Finite Fields Appl. 3 (1997), 353-369.
4. R. Chapman, “Conference matrices and unimodular lattices,” European J. Combin. 22 (2001), 1033-1045.
5. R. Chapman, Personal communication.
6. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 1st edn., Springer Verlag, New York, 1988.
7. R. T. Curtis, “The maximal subgroups of M24,” Math. Proc. Cambridge Philos. Soc. 81 (1977), 185-192.
8. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier Science Publishers, Amsterdam, 1991.
9. J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, New York, 1992.
10. Zhe-Xian Wan, Quaternary Codes, World Scientific Publishing, London, 1997.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition