The Terwilliger Algebra of a Distance-Regular Graph that Supports a Spin Model
John S. Caughman1
and Nadine Wolff2
1Department of Mathematical Sciences Portland State University P.O. Box 751 Portland OR 97207-0751
2Department of Mathematics University of Hawaii at Hilo 200 W. Kawili St. Hilo HI 96720
2Department of Mathematics University of Hawaii at Hilo 200 W. Kawili St. Hilo HI 96720
DOI: 10.1007/s10801-005-6913-1
Abstract
Let denote a distance-regular graph with vertex set X, diameter D 3, valency k 3, and assume supports a spin model W. Write W = i = 0 D t i A i where A i is the ith distance-matrix of . To avoid degenerate situations we assume is not a Hamming graph and t i { t 0, - t 0 } for 1 i D. In an earlier paper Curtin and Nomura determined the intersection numbers of in terms of D and two complex parameters and q. We extend their results as follows. Fix any vertex x X and let T = T( x) denote the corresponding Terwilliger algebra. Let U denote an irreducible T-module with endpoint r and diameter d. We obtain the intersection numbers c i( U), b i( U), a i( U) as rational expressions involving r, d, D, and q. We show that the isomorphism class of U as a T-module is determined by r and d. We present a recurrence that gives the multiplicities with which the irreducible T-modules appear in the standard module. We compute these multiplicites explicitly for the irreducible T-modules with endpoint at most 3. We prove that the parameter q is real and we show that if is not bipartite, then q > 0 and is real.
Pages: 289–310
Keywords: key words distance-regular graph; spin model; Terwilliger algebra
Full Text: PDF
References
1. E. Bannai and Et. Bannai, “Generalized generalized spin models (four weight spin models),” Pacific J. Math. 170 (1995), 1-16.
2. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
3. E. Bannai, F. Jaeger, and A. Sali, “Classification of small spin models,” Kyushu J. Math. 48 (1994), 185-200.
4. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
5. J.S. Caughman, IV, “The Terwilliger algebras of bipartite P- and Q-polynomial schemes,” Discrete Math. 196 (1999), 65-95.
6. B. Curtin, “2-homogeneous bipartite distance-regular graphs,” Discrete Math. 187 (1998), 39-70.
7. B. Curtin, “Distance-regular graphs which support a spin model are thin,” Discrete Math. 197/198 (1999), 205-216. CAUGHMAN AND WOLFF
8. B. Curtin and K. Nomura, “Some formulas for spin models on distance-regular graphs,” J. Combin. Theory Ser. B 75 (1999), 206-236.
9. B. Curtin and K. Nomura, “Spin models and strongly hyper-self-dual Bose-Mesner algebras,” J. Algebraic Combin. 13 (2001), 173-186.
10. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
11. Y. Egawa, “Characterization of H (n, q) by the parameters,” J. Combin. Theory Ser. A 31 (1981), 108-125.
12. F. Jaeger, “Towards a classification of spin models in terms of association schemes,” Adv. Stud. Pure Math. 24 (1996), 197-225.
13. F. Jaeger, M. Matsumoto, and K. Nomura, “Bose-Mesner algebras related to type II matricers and spin models,” J. Algebraic Combin. 8 (1998), 39-72.
14. A. Munemasa, Personal communication, 1994.
15. K. Nomura, “Spin models and almost bipartite 2-homogeneous graphs,” in Progress in Algebraic Combinatorics (Fukuoka, 1993), vol. 24 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo (1996) pp. 285-308.
16. K. Tanabe, “The irreducible modules of the Terwilliger algebras of Doob schemes,” J. Algebraic Combin 6 (1997), 173-195.
17. P. Terwilliger, “The subconstituent algebra of an association scheme, I,” J. Algebraic Combin. 1(4) (1992), 363-388.
18. N. Yamazaki, “Bipartite distance-regular graphs with an eigenvalue of multiplicity k,” J. Combin. Theory Ser. B 66 (1996), 34-37.
2. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
3. E. Bannai, F. Jaeger, and A. Sali, “Classification of small spin models,” Kyushu J. Math. 48 (1994), 185-200.
4. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
5. J.S. Caughman, IV, “The Terwilliger algebras of bipartite P- and Q-polynomial schemes,” Discrete Math. 196 (1999), 65-95.
6. B. Curtin, “2-homogeneous bipartite distance-regular graphs,” Discrete Math. 187 (1998), 39-70.
7. B. Curtin, “Distance-regular graphs which support a spin model are thin,” Discrete Math. 197/198 (1999), 205-216. CAUGHMAN AND WOLFF
8. B. Curtin and K. Nomura, “Some formulas for spin models on distance-regular graphs,” J. Combin. Theory Ser. B 75 (1999), 206-236.
9. B. Curtin and K. Nomura, “Spin models and strongly hyper-self-dual Bose-Mesner algebras,” J. Algebraic Combin. 13 (2001), 173-186.
10. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
11. Y. Egawa, “Characterization of H (n, q) by the parameters,” J. Combin. Theory Ser. A 31 (1981), 108-125.
12. F. Jaeger, “Towards a classification of spin models in terms of association schemes,” Adv. Stud. Pure Math. 24 (1996), 197-225.
13. F. Jaeger, M. Matsumoto, and K. Nomura, “Bose-Mesner algebras related to type II matricers and spin models,” J. Algebraic Combin. 8 (1998), 39-72.
14. A. Munemasa, Personal communication, 1994.
15. K. Nomura, “Spin models and almost bipartite 2-homogeneous graphs,” in Progress in Algebraic Combinatorics (Fukuoka, 1993), vol. 24 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo (1996) pp. 285-308.
16. K. Tanabe, “The irreducible modules of the Terwilliger algebras of Doob schemes,” J. Algebraic Combin 6 (1997), 173-195.
17. P. Terwilliger, “The subconstituent algebra of an association scheme, I,” J. Algebraic Combin. 1(4) (1992), 363-388.
18. N. Yamazaki, “Bipartite distance-regular graphs with an eigenvalue of multiplicity k,” J. Combin. Theory Ser. B 66 (1996), 34-37.