A Quantum Version of the Désarménien Matrix
Anna Stokke
University of Winnipeg Department of Mathematics and Statistics 515 Portage Avenue, Winnipeg Manitoba Canada R3B 2E9 515 Portage Avenue, Winnipeg Manitoba Canada R3B 2E9
DOI: 10.1007/s10801-005-4529-0
Abstract
We use elements in the quantum hyperalgebra to define a quantum version of the Désarménien matrix. We prove that our matrix is upper triangular with ones on the diagonal and that, as in the classical case, it gives a quantum straightening algorithm for quantum bideterminants. We use our matrix to give a new proof of the standard basis theorem for the q-Weyl module. As well, we show that the standard basis for the q-Weyl module and the basis dual to the standard basis for the q-Schur module are related by the quantum Désarménien matrix.
Pages: 303–316
Keywords: keywords $q$-Weyl module; $q$-Schur module; désarménien matrix; quantum straightening algorithm; standard basis theorem
Full Text: PDF
References
1. R.W. Carter and G.W. Lusztig, “On the modular representations of the general linear and symmetric groups,” Math. Z. 136 (1974), 193-242.
2. G. Cliff and A. Stokke, “Codeterminants for the symplectic Schur algebra,” J. London Math. Soc, (to appear).
3. J. Désarménien, “An algorithm for the Rota straightening formula,” Discrete Math. 30 (1980), 51-68.
4. J. Désarménien, J.P.S. Kung, and G.-C. Rota, “Invariant theory, Young bitableaux, and combinatorics,” Adv. in Math 27 (1978), 63-92.
5. S. Donkin, The q-Schur Algebra, London Mathematical Society Lecture Note Series 253, Cambridge University Press, Cambridge, 1998.
6. J.A. Green, “Combinatorics and the Schur algebra,” J. Pure Appl. Algebra 88(1-3) (1993), 89-106.
7. J.A. Green, Polynomial represenations of GLn, Lecture Notes in Mathematics 830, Springer 1980, Berlin/Heidelberg/New York.
8. R.M. Green, “q-Schur algebras and quantized enveloping algebras,” Ph.D. thesis, Warwick University, 1995.
9. J. Hu, “A combinatorial approach to representations of quantum linear groups,” Comm. Algebra 26(8) (1998), 2591-2621.
10. R.Q. Huang and J.J. Zhang, “Standard basis theorem for quantum linear groups,” Adv. Math. 102 (1993), 202-229.
11. B. Leclerc and J. Thibon, “The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0,” Electron. J. Combin. 3(2) (1996), R11.
12. G. Lusztig, “Finite dimensional Hopf algebras arising from quantized universal enveloping algebras,” J. Am. Math. Soc. 3 (1990), 257-297.
13. A. Stokke, “A symplectic Désarménien matrix and a basis for the symplectic Weyl module,” J. Algebra 272(2) (2004), 512-529.
14. E. Taft and J. Towber, “Quantum deformation of flag schemes and Grassmann schemes I-A q-deformation of the shape algebra for GL(n),” J. Algebra 142 (1991), 1-36.
15. M. Takeuchi, “Some topics on GLq (n),” J. Algebra 147 (1992), 379-410.
2. G. Cliff and A. Stokke, “Codeterminants for the symplectic Schur algebra,” J. London Math. Soc, (to appear).
3. J. Désarménien, “An algorithm for the Rota straightening formula,” Discrete Math. 30 (1980), 51-68.
4. J. Désarménien, J.P.S. Kung, and G.-C. Rota, “Invariant theory, Young bitableaux, and combinatorics,” Adv. in Math 27 (1978), 63-92.
5. S. Donkin, The q-Schur Algebra, London Mathematical Society Lecture Note Series 253, Cambridge University Press, Cambridge, 1998.
6. J.A. Green, “Combinatorics and the Schur algebra,” J. Pure Appl. Algebra 88(1-3) (1993), 89-106.
7. J.A. Green, Polynomial represenations of GLn, Lecture Notes in Mathematics 830, Springer 1980, Berlin/Heidelberg/New York.
8. R.M. Green, “q-Schur algebras and quantized enveloping algebras,” Ph.D. thesis, Warwick University, 1995.
9. J. Hu, “A combinatorial approach to representations of quantum linear groups,” Comm. Algebra 26(8) (1998), 2591-2621.
10. R.Q. Huang and J.J. Zhang, “Standard basis theorem for quantum linear groups,” Adv. Math. 102 (1993), 202-229.
11. B. Leclerc and J. Thibon, “The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0,” Electron. J. Combin. 3(2) (1996), R11.
12. G. Lusztig, “Finite dimensional Hopf algebras arising from quantized universal enveloping algebras,” J. Am. Math. Soc. 3 (1990), 257-297.
13. A. Stokke, “A symplectic Désarménien matrix and a basis for the symplectic Weyl module,” J. Algebra 272(2) (2004), 512-529.
14. E. Taft and J. Towber, “Quantum deformation of flag schemes and Grassmann schemes I-A q-deformation of the shape algebra for GL(n),” J. Algebra 142 (1991), 1-36.
15. M. Takeuchi, “Some topics on GLq (n),” J. Algebra 147 (1992), 379-410.