On the graph of a function in two variables over a finite field
Simeon Ball
and Michel Lavrauw
Universitat Politècnica de Catalunya Departament de Matemàtica Aplicada IV Jordi Girona 1-3, Mòdul C3, Campus Nord 08034 Barcelona Spain Jordi Girona 1-3, Mòdul C3, Campus Nord 08034 Barcelona Spain
DOI: 10.1007/s10801-006-7396-4
Abstract
We show that if the number of directions not determined by a pointset W {\mathcal{W}} of AG(3, q), q= p h {\mathrm{AG}}(3,q), q=p^h , of size q 2 is at least p e q then every plane intersects W {\mathcal{W}} in 0 modulo p e+1 points and apply the result to ovoids of the generalised quadrangles T 2( O) T_2({\cal O}) and T 2 *( H) T_{2}^{*}({\cal H}) .
Pages: 243–253
Keywords: keywords directions determined by a function; directions determined by a set; generalised quadrangles; ovoids
Full Text: PDF
References
1. B. Bagchi and N. S. Narasimha Sastry, “Even order inversive planes, generalized quadrangles and codes,” Geom. Dedicata, 22 (1987) 137-147.
2. S. Ball, “The number of directions determined by a function over a finite field,” J. Combin. Theory Ser. A, 104 (2003) 341-350.
3. S. Ball, “On ovoids of O(5, q),” Adv. Geom., 4 (2004) 1-7.
4. S. Ball, P. Govaerts, and L. Storme, “On ovoids of parabolic quadrics,” Des. Codes Cryptogr., 38 (2006) 131-145.
5. A. Blokhuis, S. Ball, A.E. Brouwer, L. Storme, and T. Sz\Acute\Acute onyi, “On the number of slopes of the graph of a function defined over a finite field,” J. Combin. Theory Ser. A, 86 (1999) 187-196.
6. S.E. Payne, and J.A. Thas, Finite Generalized Quadrangles. Research Notes in Mathematics,
110. Pitman (Advanced Publishing Program), Boston, MA, 1984. vi+312 pp. ISBN 0-273-08655-3
7. L. Rédei, Lacunary Polynomials Over Finite Fields, North-Holland, Amsterdam, 1973.
8. L. Storme and P. Sziklai, “Linear point sets and Rédei type k-blocking sets in P G(n, q),” J. Algebraic Combin., 14 (2001) 221-228.
2. S. Ball, “The number of directions determined by a function over a finite field,” J. Combin. Theory Ser. A, 104 (2003) 341-350.
3. S. Ball, “On ovoids of O(5, q),” Adv. Geom., 4 (2004) 1-7.
4. S. Ball, P. Govaerts, and L. Storme, “On ovoids of parabolic quadrics,” Des. Codes Cryptogr., 38 (2006) 131-145.
5. A. Blokhuis, S. Ball, A.E. Brouwer, L. Storme, and T. Sz\Acute\Acute onyi, “On the number of slopes of the graph of a function defined over a finite field,” J. Combin. Theory Ser. A, 86 (1999) 187-196.
6. S.E. Payne, and J.A. Thas, Finite Generalized Quadrangles. Research Notes in Mathematics,
110. Pitman (Advanced Publishing Program), Boston, MA, 1984. vi+312 pp. ISBN 0-273-08655-3
7. L. Rédei, Lacunary Polynomials Over Finite Fields, North-Holland, Amsterdam, 1973.
8. L. Storme and P. Sziklai, “Linear point sets and Rédei type k-blocking sets in P G(n, q),” J. Algebraic Combin., 14 (2001) 221-228.