ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Table algebras with multiple P-polynomial structures

Bangteng Xu
Eastern Kentucky University Department of Mathematics and Statistics Richmond KY 40475 Richmond KY 40475

DOI: 10.1007/s10801-006-8349-7

Abstract

Using covering numbers we prove that a standard real integral table algebra (A, B) with | B| \geq  6 has a P-polynomial structure with respect to every b \neq  1 in B if and only if 2| B|-1 is prime and ( A, B) is exactly isomorphic to the Bose-Mesner algebra of the association scheme of the ordinary (2| B|-1)-gon. Then we present an example showing that this result is not true if | B| \leq  5.

Pages: 377–393

Keywords: keywords table algebras; covering numbers; association schemes; Bose-mesner algebras; P-polynomial structures

Full Text: PDF

References

1. Z. Arad and H. Blau, On table algebras and applications to finite group theory, J. Algebra 138 (1991), 137-185.
2. Z. Arad and H. Blau, An infinite family of nonabelian simple table algebras not induced by finite nonabelian simple groups, in “Groups St. Andrews 1989,” Vol. 1, pp. 29-37, Cambridge Univ. Press, Cambridge, UK, 1991.
3. A. Brouwer, A. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag Berlin Heidelberg, 1989.
4. E. Bannai and T. Ito, “Algebraic Combinatorics I: Association Schemes,” Benjamin/Cummings, Menlo Park, CA, 1984.
5. H. I. Blau, Quotient structures in C-algebras, J. Algebra 177 (1995), 297-337.
6. H. Suzuki, A note on association schemes with two P-polynomial structures of type III, J. Combin. Theory Ser. A 74 (1996), 158-168.
7. B. Xu, Polynomial table algebras and their covering numbers, J. Algebra 176 (1995), 504-527.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition