ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Finite vertex primitive 2-arc regular graphs

X.G. Fang1 , C.H. Li2 and J. Wang3
1LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China
2Department of Mathematics, Yunnan University, Kunming 650031, P. R. China School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
3C. H. Li Department of Mathematics, Yunnan University, Kunming 650031, P. R. China School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

DOI: 10.1007/s10801-006-0021-8

Abstract

A classification is given of finite graphs that are vertex primitive and 2-arc regular. The classification involves various new constructions of interesting 2-arc transitive graphs.

Pages: 125–140

Keywords: keywords 2-arc regular graphs; vertex primitive

Full Text: PDF

References

1. J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
2. X.G. Fang and C.E. Praeger, “Two-arc transitive graphs admitting an almost simple group with socle Suzuki group,” Comm. Algebra 27(8) (1999), 3727-3754.
3. The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4; 2005, (fttp://www.gapsystem.org).
4. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
5. B. Huppert and N. Blackburn, Finite Groups II, III, Springer-Verlag, Berlin, 1982.
6. A.A. Ivanov and C.E. Praeger, “On finite affine 2-arc transitive graphs,” European J. Combin. 14 (1993), 421-444.
7. P. Kleidman and M. Liebeck, The Subgroup Structure of The Finite Classical Groups, Cambridge University Press, New York, Sydney, 1990.
8. C.H. Li, “The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s \geq 4,” Trans. Amer. Math. Soc. 353(9) (2001), 3511-3529.
9. C.H. Li, Z.P. Lu and D. Marusic, “On primitive permutation groups with small suborbits and their orbital graphs,” J. Algebra 279(2) (2004), 749-770.
10. C.H. Li and A. Seress, “Symmetrical path-cycle covers of a graph and polygonal graphs,” J. Combin. Theory Ser. A, (to appear); (electronically available online 10 March 2006).
11. M.W. Liebeck, C.E. Praeger and J. Saxl, “A classification of the maximal subgroups of the finite alternating and symmetric groups,” J. Algebra 111 (1987), 365-383.
12. G. Malle, “The maximal subgroups of 2 F4(q2),” J. Algebra 139 (1991), 52-69.
13. H.H. Mitchell, “Determination of the ordinary and modular ternary linear groups,” Trans. Amer. Math. Soc. 12 (1911), 207-242.
14. M. Perkel, “Near-polygonal graphs,” Ars. Comb. 26A (1988), 149-170.
15. M. Perkel and C.E. Praeger, “Polygonal graphs: new families and an approach to their analysis,” Conr. Num. 124 (1997), 161-173.
16. C.E. Praeger, “An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs,” J. London Math. Soc. 47(2) (1993) 227-239. Springer J Algebr Comb (2007) 25:125-140
17. K. Shinoda, “A characterization of odd order extensions of Ree groups of type (F4),” J. Fac. Sci. Univ. Tokyo 22 (1975), 79-102.
18. M. Suzuki, “On a class of doubly transitive groups,” Ann. Math. 75 (1962), 105-145.
19. W.T. Tutte, “A family of cubical graphs,” Proc. Cambridge Phil. Soc. 43 (1947), 459-474.
20. J. Wang, “Primitive permutation groups with a sharply 2-transitive subconstituent,” J. Algebra 176 (1995), 702-734.
21. R.M. Weiss, “The nonexistence of 8-arc transitive graphs,” Combinatoria 3 (1981), 309-311.
22. S. Zhou, “Almost covers of 2-arc transitive graphs,” Combinatorica 24 (2004), 731-745.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition