Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type D n
Wakako Nakai
and Tomoki Nakanishi
Nagoya University Graduate School of Mathematics Nagoya 464-8602 Japan
DOI: 10.1007/s10801-007-0057-4
Abstract
We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type D n . Unlike the A n and B n cases, a simple application of the Gessel-Viennot path method does not yield an expression of the determinant by a positive sum over a set of tuples of paths. However, applying an additional involution and a deformation of paths, we obtain an expression by a positive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
Pages: 253–290
Keywords: keywords quantum group; $q$-character; lattice path; Young tableau
Full Text: PDF
References
1. Bazhanov, V.V., Reshetikhin, N.: Restricted solid-on-solid models connected with simply laced algebras and conformal field theory. J. Phys. A 23, 1477-1492 (1990)
2. Chari, V., Moura, A.: Characters of fundamental representations of quantum affine algebras. Acta Appl. Math. 90, 43-63 (2006)
3. Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142, 261-283 (1991)
4. Drinfel'd, V.: Hopf algebras and the quantum Yang-Baxter equation. Soviet. Math. Dokl. 32, 254-258 (1985)
5. Drinfel'd, V.: A new realization of Yangians and quantized affine algebras. Soviet. Math. Dokl. 36, 212-216 (1988)
6. Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23-57 (2001)
7. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras. Contemp. Math. 248, 163-205 (1999)
8. Fulmek, M., Krattenthaler, C.: Lattice path proofs for determinantal formulas for symplectic and orthogonal characters. J. Combin. Theory Ser. A 77, 3-50 (1997)
9. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300- 321 (1985)
10. Hernandez, D.: The Kirillov-Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63-87 (2006)
11. Jimbo, M.: A q-difference analogue of U (\hat g) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63-69 (1985)
12. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra 165, 295-345 (1994) J Algebr Comb (2007) 26: 253-290
13. Koike, K., Terada, I.: Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn. J. Algebra 107, 466-511 (1987) (1)
14. Kuniba, A., Ohta, Y., Suzuki, J.: Quantum Jacobi-Trudi and Giambelli formulae for Uq (Br ) from the analytic Bethe ansatz. J. Phys. A 28, 6211-6226 (1995)
15. Kuniba, A., Suzuki, J.: Analytic Bethe ansatz for fundamental representations of Yangians. Commun. Math. Phys. 173, 225-264 (1995)
16. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)
17. Nakai, W., Nakanishi, T.: Paths, tableaux and q-characters of quantum affine algebras: the Cn case. J. Phys. A: Math. Gen. 39, 2083-2115 (2006)
18. Nakai, W., Nakanishi, T.: Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type Cn. Preprint, math.QA/0604158
19. Nakajima, H.: t -analogs of q-characters of quantum affine algebras of type An and Dn. Contemp. Math. 325, 141-160 (2003) (2)
20. Okado, M., Schilling, A., Shimozono, M.: Virtual crystals and fermionic formulas of type D , n+1 (2) (1) A , and C 2n n . Represent. Theory 7, 101-163 (2003) (1)
21. Schilling, A., Sternberg, P.: Finite-dimensional crystals B2,s for quantum affine algebras of type Dn .
2. Chari, V., Moura, A.: Characters of fundamental representations of quantum affine algebras. Acta Appl. Math. 90, 43-63 (2006)
3. Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142, 261-283 (1991)
4. Drinfel'd, V.: Hopf algebras and the quantum Yang-Baxter equation. Soviet. Math. Dokl. 32, 254-258 (1985)
5. Drinfel'd, V.: A new realization of Yangians and quantized affine algebras. Soviet. Math. Dokl. 36, 212-216 (1988)
6. Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23-57 (2001)
7. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras. Contemp. Math. 248, 163-205 (1999)
8. Fulmek, M., Krattenthaler, C.: Lattice path proofs for determinantal formulas for symplectic and orthogonal characters. J. Combin. Theory Ser. A 77, 3-50 (1997)
9. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300- 321 (1985)
10. Hernandez, D.: The Kirillov-Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63-87 (2006)
11. Jimbo, M.: A q-difference analogue of U (\hat g) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63-69 (1985)
12. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra 165, 295-345 (1994) J Algebr Comb (2007) 26: 253-290
13. Koike, K., Terada, I.: Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn. J. Algebra 107, 466-511 (1987) (1)
14. Kuniba, A., Ohta, Y., Suzuki, J.: Quantum Jacobi-Trudi and Giambelli formulae for Uq (Br ) from the analytic Bethe ansatz. J. Phys. A 28, 6211-6226 (1995)
15. Kuniba, A., Suzuki, J.: Analytic Bethe ansatz for fundamental representations of Yangians. Commun. Math. Phys. 173, 225-264 (1995)
16. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)
17. Nakai, W., Nakanishi, T.: Paths, tableaux and q-characters of quantum affine algebras: the Cn case. J. Phys. A: Math. Gen. 39, 2083-2115 (2006)
18. Nakai, W., Nakanishi, T.: Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type Cn. Preprint, math.QA/0604158
19. Nakajima, H.: t -analogs of q-characters of quantum affine algebras of type An and Dn. Contemp. Math. 325, 141-160 (2003) (2)
20. Okado, M., Schilling, A., Shimozono, M.: Virtual crystals and fermionic formulas of type D , n+1 (2) (1) A , and C 2n n . Represent. Theory 7, 101-163 (2003) (1)
21. Schilling, A., Sternberg, P.: Finite-dimensional crystals B2,s for quantum affine algebras of type Dn .