ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Betti numbers of strongly color-stable ideals and squarefree strongly color-stable ideals

Satoshi Murai
Osaka University Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology Toyonaka Osaka 560-0043 Japan

DOI: 10.1007/s10801-007-0095-y

Abstract

In this paper, we will show that the color-squarefree operation does not change the graded Betti numbers of strongly color-stable ideals. In addition, we will give an example of a nonpure balanced complex which shows that colored algebraic shifting, which was introduced by Babson and Novik, does not always preserve the dimension of reduced homology groups of balanced simplicial complexes.

Pages: 383–398

Keywords: keywords colored algebraic shifting; balanced complexes; graded Betti numbers

Full Text: PDF

References

1. Aramova, A., Avramov, L.L., Herzog, J.: Resolutions of monomial ideals and cohomology over exterior algebras. Trans. Am. Math. Soc. 352(2), 579-594 (2000)
2. Aramova, A., Crona, K., De Negri, E.: Bigeneric initial ideals, diagonal subalgebras and bigraded Hilbert functions. J. Pure Appl. Algebra 150(3), 215-235 (2000)
3. Aramova, A., Herzog, J., Hibi, T.: Gotzmann theorems for exterior algebras and combinatorics. J. Algebra 191, 174-211 (1997)
4. Aramova, A., Herzog, J., Hibi, T.: Shifting operations and graded Betti numbers. J. Algebra Comb. 12(3), 207-222 (2000)
5. Babson, E., Novik, I.: Face numbers and nongeneric initial ideals. Electron. J. Comb. 11(2), 23 (2006) Research Paper 25
6. Bigatti, A.M., Conca, A., Robbiano, L.: Generic initial ideals and distractions. Commun. Algebra 33(6), 1709-1732 (2005)
7. Björner, A., Frankl, P., Stanley, R.P.: The number of faces of balanced Cohen-Macaulay complexes and generalized Macaulay theorem. Combinatorica 7, 23-34 (1987)
8. Björner, A., Kalai, G.: An extended Euler-Poincaré theorem. Acta. Math. 161, 279-303 (1988)
9. Björner, A., Wachs, M.: Shellable nonpure complexes and posets. I. Trans. Am. Math. Soc. 348(4), 1299-1327 (1996)
10. Bruns, W., Herzog, J.: Cohen-Macaulay rings, Revised edn. Cambridge University Press, Cambridge (1998)
11. CoCoA Team: CoCoA: a system for doing computations in commutative algebra. Available at




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition