ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Leonard triples and hypercubes

Štefko Miklavič
University of Primorska Department of Mathematics and Computer Science, Faculty of Education 6000 Koper Slovenia

DOI: 10.1007/s10801-007-0108-x

Abstract

Let V denote a vector space over \Bbb C with finite positive dimension. By a Leonard triple on V we mean an ordered triple of linear operators on V such that for each of these operators there exists a basis of V with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal.
Let D denote a positive integer and let Q D denote the graph of the D-dimensional hypercube. Let X denote the vertex set of Q D and let A Ĩ Mat X(\mathbb C) A\in {\rm Mat}_{X}({\mathbb{C}}) denote the adjacency matrix of Q D . Fix x\in  X and let A * Ĩ Mat X(\mathbb C) A^{*}\in {\rm Mat}_{X}({\mathbb{C}}) denote the corresponding dual adjacency matrix. Let T denote the subalgebra of Mat X(\mathbb C) {\rm Mat}_{X}({\mathbb{C}}) generated by A, A *. We refer to T as the Terwilliger algebra of Q D with respect to x. The matrices A and A * are related by the fact that 2 i A= A * A ϵ   -  A ϵ  A * and 2 i A *= A ϵ  A -  AA ϵ  , where 2 i A ϵ  = AA * -  A * A and i 2= - 1.

Pages: 397–424

Keywords: keywords leonard triple; distance-regular graph; hypercube; Terwilliger algebra

Full Text: PDF

References

1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1999)
2. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin-Cummings Lecture Notes, vol.
58. Benjamin-Cummings, Menlo Park (1984)
3. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin, Heidelberg (1989)
4. Caughman IV, J.S.: The Terwilliger algebras of bipartite P - and Q-polynomial schemes. Discrete Math. 196, 65-95 (1999)
5. Curtin, B.: Modular Leonard triples. Linear Algebra Appl. 424, 510-539 (2007)
6. Curtin, B.: Spin Leonard pairs. Ramanujan J. 13, 319-332 (2006)
7. Curtin, B.: Distance-regular graphs that support a spin model are thin. Discrete Math. 197-198, 205- 216 (1999)
8. Curtin, B., Nomura, K.: Distance-regular graphs related to the quantum enveloping algebra of sl(2). J. Algebr. Comb. 12, 25-36 (2000)
9. Eves, H.: Elementary Matrix Theory. Allyn and Bacon, Boston (1966)
10. Go, J.T.: The Terwilliger algebra of the hypercube. Eur. J. Comb. 23, 399-429 (2002)
11. Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)
12. Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to P - and Q-polynomial association schemes. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 56, 167-192 (2001)
13. Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Faculty of Information Technology and Systems, De- partment of Technical Mathematics and Informatics, Report no. 98-17 (1998).
14. Koelink, H.T.: Askey-Wilson polynomials and the quantum su(2) group: survey and applications. Acta. Appl. Math. 44, 295-352 (1996)
15. Korovnichenko, A., Zhedanov, A.: Classical Leonard triples. Preprint
16. Schrijver, A.: New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE Trans. Inf. Theory 51, 2859-2866 (2005)
17. Terwilliger, P.: The subconstituent algebra of an association scheme, part I. J. Algebr. Comb. 1, 363- 388 (1992) J Algebr Comb (2008) 28: 397-424
18. Terwilliger, P.: The subconstituent algebra of an association scheme, part II. J. Algebr. Comb. 2, 73- 103 (1993)
19. Terwilliger, P.: The subconstituent algebra of an association scheme, part III. J. Algebr. Comb. 2, 177-210 (1993)
20. Terwilliger, P.: Two relations that generalize the q-Serre relations and the Dolan-Grady relations. In: Physics and Combinatorics, Nagoya, 1999, pp. 377-398. World Scientific, River Edge (2001)
21. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition