ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On Weyl-Heisenberg orbits of equiangular lines

Mahdad Khatirinejad
Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

DOI: 10.1007/s10801-007-0104-1

Abstract

An element z Ĩ \mathbb CP d -1 \mathbf {z}\in \mathbb {CP}^{d-1} is called fiducial if { gz: g\in  G} is a set of lines with only one angle between each pair, where G \cong \Bbb Z d \times \Bbb Z d is the one-dimensional finite Weyl-Heisenberg group modulo its centre. We give a new characterization of fiducial vectors. Using this characterization, we show that the existence of almost flat fiducial vectors implies the existence of certain cyclic difference sets. We also prove that the construction of fiducial vectors in prime dimensions 7 and 19 due to Appleby (J. Math. Phys. 46(5):052107, 2005) does not generalize to other prime dimensions (except for possibly a set with density zero). Finally, we use our new characterization to construct fiducial vectors in dimension 7 and 19 whose coordinates are real.

Pages: 333–349

Keywords: keywords complex equiangular lines; Weyl-Heisenberg group; fiducial vector; SIC-POVM

Full Text: PDF

References

1. Andrews, G.E.: Number Theory. Dover, New York (1994)
2. Appleby, D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46(5), 052107 (2005)
3. Appleby, D.M., Dang, H.B., Fuchs, C.A.: Physical significance of symmetric informationallycomplete sets of quantum states. Preprint arXiv:0707.2071v1 (2007)
4. Baumert, L.D., Gordon, D.M.: On the existence of cyclic difference sets with small parameters. In: High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams. Fields Inst. Commun., vol. 41, pp. 61-68. Amer. Math. Soc., Providence (2004)
5. Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de finetti representation. J. Math. Phys. 43, 4537-4559 (2002)
6. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6(3), 363-388 (1977)
7. Flammia, S.T.: On SIC-POVMs in prime dimensions. J. Phys. A 39(43), 13483-13493 (2006)




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition