ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On q-analogs of weight multiplicities for the Lie superalgebras \mathfrak gl( n, m) \mathfrak{gl}(n,m) and \mathfrak spo(2 n, M) \mathfrak{spo(}2n,M)

Cédric Lecouvey and Cristian Lenart

DOI: 10.1007/s10801-008-0154-z

Abstract

The paper is devoted to the generalization of Lusztig's q-analog of weight multiplicities to the Lie superalgebras \mathfrak gl( n, m) \mathfrak{gl}(n,m) and \mathfrak spo(2 n, M). \mathfrak{spo(}2n,M). We define such q-analogs K λ , μ  ( q) for the typical modules and for the irreducible covariant tensor \mathfrak gl( n, m) \mathfrak{gl}(n,m) -modules of highest weight λ . For \mathfrak gl( n, m), \mathfrak{gl}(n,m), the defined polynomials have nonnegative integer coefficients if the weight μ  is dominant. For \mathfrak spo(2 n, M) \mathfrak{spo(}2n,M) , we show that the positivity property holds when μ  is dominant and sufficiently far from a specific wall of the fundamental chamber. We also establish that the q-analog associated to an irreducible covariant tensor \mathfrak gl( n, m) \mathfrak{gl}(n,m) -module of highest weight λ  and a dominant weight μ  is the generating series of a simple statistic on the set of semistandard hook-tableaux of shape λ  and weight μ . This statistic can be regarded as a super analog of the charge statistic defined by Lascoux and Schützenberger.

Pages: 141–163

Keywords: keywords general linear superalgebras; orthosymplectic superalgebras; typical modules; irreducible covariant tensor modules; Lusztig's $q$-analog of weight multiplicity; semistandard hook-tableaux; charge statistic

Full Text: PDF

References

1. Benkart, G., Kang, S.-J., Kashiwara, M.: Crystal bases for the quantum superalgebra Uq (gl(m, n)). J. Am. Math. Soc. 13, 295-331 (2000)
2. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64, 118-175 (1987)
3. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities and convex polytopes in partition space. J. Geom. Phys. 5, 453-472 (1988)
4. Bernšte\?ın, I., Le\?ıtes, D.: A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series gl and sl. C.R. Acad. Bulg. Sci. 33, 1049-1051 (1980)
5. Brundan, J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n). J. Am. Math. Soc. 16(1), 185-231 (2003)
6. Van der Jeugt, J., Hughes, J., King, R., Thierry-Mieg, J.: A character formula for singly atypical modules of the Lie superalgebra sl(m|n). Comm. Algebra 18, 3453-3480 (1990)
7. Van der Jeugt, J., Hughes, J., King, R., Thierry-Mieg, J.: Character formulas for irreducible modules of the Lie superalgebras sl(m|n). J. Math. Phys. 31, 2278-2304 (1990)
8. Frappat, L., Sciarrino, A., Sorba, P.: Dictionary on Lie Algebras and Superalgebras. Academic Press, San Diego (2000)
9. Fulton, W.: Young Tableaux, vol.
35. London Math. Soc. Student Texts. Cambridge Univ. Press, Cambridge and New York (1997)
10. Hughes, J., King, R., Van der Jeugt, J.: On the composition factors of Kac modules for the Lie superalgebras sl(m|n). J. Math. Phys. 33, 470-491 (1992)
11. Kac, V.: Lie superalgebras. Adv. Math. 26, 8-96 (1977)
12. Kac, V., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory. In: Lie theory and geometry. Progr. Math., vol. 123, pp. 415-456. Birkhäuser Boston, Boston (1994)
13. Kashiwara, M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J. 63, 465-516 (1991)
14. King, R.: S-functions and characters of Lie algebras and superalgebras. In: Invariant theory and tableaux, Minneapolis,
1988. IMA Vol. Math. Appl., vol. 19, pp. 226-261. Springer, New York (1990)
15. Lascoux, A.: Le monoïde plaxique. Quad. Ric. Sci. 109, 129-156 (1981)
16. Lascoux, A., Schützenberger, M.-P.: Sur une conjecture de H.O. Foulkes. C.R. Acad. Sci. Paris Sér. I Math. 288, 95-98 (1979)
17. Lecouvey, C.: Quantization of branching coefficients for classical Lie groups. J. Algebra 308, 383- 413 (2007)
18. Lecouvey, C., Shimozono, M.: Lusztig's q-analogue of weight multiplicity and one-dimensional sums for affine root systems. Adv. Math. 208, 438-466 (2007)
19. Lothaire, M.: Algebraic Combinatorics on Words. The plactic monoid (by A. Lascoux, B. Leclerc, and J-Y. Thibon), pp. 144-172. Cambridge University Press, Cambridge (2002)
20. Lusztig, G.: Singularities, character formulas, and a q-analog of weight multiplicities. In: Analysis and topology on singular spaces, II, III, Luminy,
1981. Astérisque, vol. 101, pp. 208-229. Soc. Math. France, Paris (1983)
21. Penkov, I., Serganova, V.: Generic irreducible representations of finite-dimensional Lie superalgebras. Int. J. Math. 5, 389-419 (1994)
22. Serganova, V.: Kazhdan-Lusztig polynomials for Lie superalgebra gl(m|n). In: I.M. Gel fand Seminar. Adv. Soviet Math., vol. 16, pp. 151-165. Amer. Math. Soc., Providence (1993)
23. Serganova, V.: Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra gl(m|n). Selecta Math. (N.S.) 2, 607-651 (1996)
24. Sergeev, A.: Tensor algebra of the identity representation as a module over the Lie superalgebras GL(n, m) and Q(n). Mat. Sb. (N.S.) 123(165), 422-430 (1984)
25. Viswanath, S.: Kostka-Foulkes polynomials for symmetrizable Kac-Moody algebras.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition