ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Parallelogram-free distance-regular graphs having completely regular strongly regular subgraphs

Hiroshi Suzuki

DOI: 10.1007/s10801-009-0167-2

Abstract

Let Γ =( X, R) be a distance-regular graph of diameter d. A parallelogram of length i is a 4-tuple xyzw consisting of vertices of Γ  such that
tial 
( x, y)=
tial 
( z, w)=1,
tial 
( x, z)= i, and
tial 
( x, w)=
tial 
( y, w)=
tial 
( y, z)= i - 1. A subset Y of X is said to be a completely regular code if the numbers
p i, j= | G j( x) Ç Y |    ( i, j Ĩ {0,1, \frac{1}{4} , d}) \pi_{i,j}=|\Gamma_{j}(x)\cap Y|\quad (i,j\in \{0,1,\ldots,d\})

Pages: 401–413

Keywords: keywords distance-regular graph; association scheme; homogeneity; completely regular code

Full Text: PDF

References

1. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)
2. Brouwer, A.E., Godsil, C.D., Koolen, J.H., Martin, W.J.: Width and dual width of subsets in polynomial association schemes. J. Comb. Theory A 102, 255-271 (2003)
3. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Research Reports Supplements 1973, No.10
4. Hosoya, R., Suzuki, H.: Tight distance-regular graphs with respect to subsets of width two. Eur. J. Comb. 28, 61-74 (2007)
5. Neumaier, A.: Completely regular codes. Discrete Math. 106-107, 353-360 (1992)
6. Nomura, K.: Distance-regular graphs of Hamming type. J. Comb. Theory B 50, 160-167 (1990)
7. Suzuki, H.: On strongly closed subgraphs of highly regular graphs. Eur. J. Comb. 16, 197-220 (1995)
8. Suzuki, H.: Strongly closed subgraphs of a distance-regular graph with geometric girth five. Kyushu J. Math. 50, 371-384 (1996)
9. Suzuki, H.: The Terwilliger algebra associated with a set of vertices in a distance-regular graph. J. Al- gebr. Comb. 22, 5-38 (2005)
10. Tanaka, H.: Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Comb. Theory A 113, 903-910 (2006) 11. van Tilborg, H.C.A.: Uniformly packed codes. Ph.D. thesis, Eindhoven (1976).




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition