Slices of the unitary spread
G. Lunardon
, L. Parlato2
, V. Pepe2
and R. Trombetti4
2Department of Pure Mathematics and Computer Algebra, University of Gent, Krijgslaan 281, 9000 Gent, Belgium
4V. Pepe Department of Pure Mathematics and Computer Algebra, University of Gent, Krijgslaan 281, 9000 Gent, Belgium
DOI: 10.1007/s10801-010-0232-x
Abstract
We prove that slices of the unitary spread of Q +(7, q) \mathcal{Q}^{+}(7,q), q\equiv 2 (mod 3), can be partitioned into five disjoint classes. Slices belonging to different classes are non-equivalent under the action of the subgroup of PΓ O +(8, q) fixing the unitary spread. When q is even, there is a connection between spreads of Q +(7, q) \mathcal{Q}^{+}(7,q) and symplectic 2-spreads of PG(5, q) (see Dillon, Ph.D. thesis, 1974 and Dye, Ann. Mat. Pura Appl. (4) 114, 173-194, 1977). As a consequence of the above result we determine all the possible non-equivalent symplectic 2-spreads arising from the unitary spread of Q +(7, q) \mathcal{Q}^{+}(7,q), q=2 2 h+1. Some of these already appeared in Kantor, SIAM J. Algebr. Discrete Methods 3(2), 151-165, 1982. When q=3 h , we classify, up to the action of the stabilizer in PΓ O(7, q) of the unitary spread of Q(6, q), those among its slices producing spreads of the elliptic quadric Q -(5, q) \mathcal{Q}^{-}(5,q).
Pages: 37–56
Keywords: keywords ovoid; unitary spread; slice
Full Text: PDF
References
1. Baker, R.D., Ebert, G.L., Wantz, K.L.: Regular hyperbolic fibrations. Adv. Geom. 1(2), 119-144 (2001)
2. Cooperstein, B.N.: Hyperplane sections of Kantor's unitary ovoid. Des. Codes Cryptogr. 23(2), 185- 195 (2001)
3. Dillon, J.F.: Elementary Hadamard difference sets. Ph.D. thesis, Univ. of Meryland, College Park (1974)
4. Dye, R.: Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. 114(4), 173-194 (1977)
5. Giuzzi, L.: Collineation groups of the intersection of two classical unitals. J. Comb. Des. 9(6), 445- 459 (2001)
6. Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimension. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1985)
7. Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1991)
8. Kantor, W.M.: Ovoids and translation planes. Can. J. Math. 34(5), 1195-1207 (1982)
9. Kantor, W.M.: Spreads, translation planes and Kerdock sets I. SIAM J. Algebr. Discrete Methods 3(2), 151-165 (1982)
10. Kestenband, B.C.: Unital intersections in finite projective planes. Geom. Dedicata 11(1), 107-117 (1981)
11. Lunardon, G.: Normal spreads. Geom. Dedicata 75(3), 245-261 (1999)
12. Moisio, M.: Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm. Acta Arith. 132(4), 329-350 (2008)
13. Payne, S.E., Thas, J.A.: Finite Generalized Quadrangles. Pitman Advanced Publishing Program (1984) J Algebr Comb (2011) 33: 37-56
2. Cooperstein, B.N.: Hyperplane sections of Kantor's unitary ovoid. Des. Codes Cryptogr. 23(2), 185- 195 (2001)
3. Dillon, J.F.: Elementary Hadamard difference sets. Ph.D. thesis, Univ. of Meryland, College Park (1974)
4. Dye, R.: Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. 114(4), 173-194 (1977)
5. Giuzzi, L.: Collineation groups of the intersection of two classical unitals. J. Comb. Des. 9(6), 445- 459 (2001)
6. Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimension. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1985)
7. Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1991)
8. Kantor, W.M.: Ovoids and translation planes. Can. J. Math. 34(5), 1195-1207 (1982)
9. Kantor, W.M.: Spreads, translation planes and Kerdock sets I. SIAM J. Algebr. Discrete Methods 3(2), 151-165 (1982)
10. Kestenband, B.C.: Unital intersections in finite projective planes. Geom. Dedicata 11(1), 107-117 (1981)
11. Lunardon, G.: Normal spreads. Geom. Dedicata 75(3), 245-261 (1999)
12. Moisio, M.: Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm. Acta Arith. 132(4), 329-350 (2008)
13. Payne, S.E., Thas, J.A.: Finite Generalized Quadrangles. Pitman Advanced Publishing Program (1984) J Algebr Comb (2011) 33: 37-56
© 1992–2009 Journal of Algebraic Combinatorics
©
2012 FIZ Karlsruhe /
Zentralblatt MATH for the EMIS Electronic Edition