ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Permutation resolutions for Specht modules

Robert Boltje and Robert Hartmann

DOI: 10.1007/s10801-010-0265-1

Abstract

For every composition λ  of a positive integer r, we construct a finite chain complex whose terms are direct sums of permutation modules M μ  for the symmetric group \mathfrak S r \mathfrak{S}_{r} with Young subgroup stabilizers \mathfrak S m \mathfrak{S}_{μ}. The construction is combinatorial and can be carried out over every commutative base ring k. We conjecture that for every partition λ  the chain complex has homology concentrated in one degree (at the end of the complex) and that it is isomorphic to the dual of the Specht module S λ  . We prove the exactness in special cases.

Pages: 141–162

Keywords: keywords symmetric group; permutation module; Specht module; resolution

Full Text: PDF

References

1. Akin, K.: On complexes relating the Jacobi-Trudi identity with the Bernstein-Gelfand-Gelfand resolution. J. Algebra 117, 494-503 (1988)
2. Akin, K., Buchsbaum, D.A.: Characteristic-free representation theory of the general linear group. Adv. Math. 58, 149-200 (1985)
3. Akin, K., Buchsbaum, D.A.: Characteristic-free representation theory of the general linear group, II: homological considerations. Adv. Math. 72, 171-210 (1988)
4. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of g-modules. In: Gelfand, I.M. (ed.) Lie Groups and Their Representations, pp. 21-64. Wiley, New York (1975)
5. Curtis, C.W., Reiner, I.: Methods of Representation Theory, vol.
1. Wiley, New York (1981)
6. Donkin, S.: Finite resolutions of modules for reductive algebraic groups. J. Algebra 101, 473-488 (1986)
7. Doty, S.R.: Resolutions of B modules. Indag. Math. 5(3), 267-283 (1994) J Algebr Comb (2011) 34: 141-162




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition