The Isaacs-Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic
Jean-Baptiste Gramain
DOI: 10.1007/s10801-011-0277-5
Abstract
In this paper, we prove that a refinement of the Alperin-McKay Conjecture for p-blocks of finite groups, formulated by I.M. Isaacs and G. Navarro in 2002, holds for all covering groups of the symmetric and alternating groups, whenever p is an odd prime.
Pages: 401–426
Keywords: keywords representation theory; symmetric group; covering groups; bar-partitions
Full Text: PDF
References
1. Cabanes, M.: Local structure of the p-blocks of \~ Sn. Math. Z. 198, 519-543 (1988)
2. Fong, P.: The Isaacs-Navarro Conjecture for symmetric groups. J. Algebra 260(1), 154-161 (2003)
3. Humphreys, J.F.: On certain projective modular representations of direct products. J. Lond. Math. Soc. (2) 32, 449-459 (1985)
4. Humphreys, J.F.: Blocks of projective representations of the symmetric groups. J. Lond. Math. Soc. (2) 32, 441-452 (1986)
5. Isaacs, I.M., Navarro, G.: New refinements of the McKay Conjecture for arbitrary finite groups. Ann.
2. Fong, P.: The Isaacs-Navarro Conjecture for symmetric groups. J. Algebra 260(1), 154-161 (2003)
3. Humphreys, J.F.: On certain projective modular representations of direct products. J. Lond. Math. Soc. (2) 32, 449-459 (1985)
4. Humphreys, J.F.: Blocks of projective representations of the symmetric groups. J. Lond. Math. Soc. (2) 32, 441-452 (1986)
5. Isaacs, I.M., Navarro, G.: New refinements of the McKay Conjecture for arbitrary finite groups. Ann.
© 1992–2009 Journal of Algebraic Combinatorics
©
2012 FIZ Karlsruhe /
Zentralblatt MATH for the EMIS Electronic Edition