ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Specht modules with abelian vertices

Kay Jin Lim

DOI: 10.1007/s10801-011-0298-0

Abstract

In this article, we consider indecomposable Specht modules with abelian vertices. We show that the corresponding partitions are necessarily p 2-cores where p is the characteristic of the underlying field. Furthermore, in the case of p\geq 3, or p=2 and μ  is 2-regular, we show that the complexity of the Specht module S μ  is precisely the p-weight of the partition μ . In the latter case, we classify Specht modules with abelian vertices. For some applications of the above results, we extend a result of M. Wildon and compute the vertices of the Specht module S ( p p) S^{(p^{p})} for p\geq 3.

Pages: 157–171

Keywords: keywords Specht module; vertex; complexity

Full Text: PDF

References

1. Adem, A., Milgram, R.J.: Cohomology of Finite Groups, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol.
309. Springer, Berlin (2004)
2. Alperin, J.L., Evens, L.: Representations, resolutions and Quillen's dimension theorem. J. Pure Appl. Algebra 22, 221-227 (1981)
3. Avrunin, G.S., Scott, L.L.: Quillen stratification for modules. Invent. Math. 66, 277-286 (1982)
4. Benson, D.J.: Representations and Cohomology I, II, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 30,
31. Cambridge University Press, Cambridge (1990)
5. Bessenrodt, C.: The isomorphism type of an abelian defect group of a block is determined by its modules. J. Lond. Math. Soc. 39(2), 61-66 (1989)
6. Carlson, J.: The varieties and the cohomology ring of a module. J. Algebra 85, 104-143 (1983)
7. Chuang, J., Tan, K.M.: On Young modules of defect 2 blocks of symmetric group algebras. J. Algebra 221, 651-668 (1999)
8. Danz, S., Külshammer, B., Zimmermann, R.: On vertices of simple modules for symmetric groups of small degrees. J. Algebra 320, 680-707 (2008)
9. Donkin, S.: Symmetric and exterior powers, linear source modules and representations of Schur superalgebras. Proc. Lond. Math. Soc. 83, 647-680 (2001)
10. Erdmann, K.: Young modules for symmetric groups. Special issue on group theory. J. Aust. Math. Soc. 71, 201-210 (2001)
11. Feit, W.: The Representation Theory of Finite Groups. North-Holland Mathematical Library, vol.
25. North-Holland, Amsterdam (1982)
12. Grabmeier, J.: Unzerlegbare Moduln mit trivialer Youngquelle und Darstellungstheorie der Schuralgebra. Bayreuth. Math. Schr. 20, 9-152 (1985)
13. Green, J.A.: On the indecomposable representations of a finite group. Math. Z. 70, 430-445 (1959)
14. Hartshorne, R.: Algebraic Geometry. Graduate Text in Mathematics, vol.
52. Springer, New York (1977)
15. Hemmer, D.: The complexity of certain Specht modules for the symmetric group. J. Algebr. Comb.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition