ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Arc-regular cubic graphs of order four times an odd integer

Marston D.E. Conder1 and Yan-Quan Feng2
1Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
2Mathematics, Beijing Jiaotong University, Beijing, 100044 P.R. China

DOI: 10.1007/s10801-011-0321-5

Abstract

A graph is arc-regular if its automorphism group acts sharply-transitively on the set of its ordered edges. This paper answers an open question about the existence of arc-regular 3-valent graphs of order 4 m where m is an odd integer. Using the Gorenstein-Walter theorem, it is shown that any such graph must be a normal cover of a base graph, where the base graph has an arc-regular group of automorphisms that is isomorphic to a subgroup of Aut(PSL(2, q)) containing PSL(2, q) for some odd prime-power  q. Also a construction is given for infinitely many such graphs-namely a family of Cayley graphs for the groups PSL(2, p 3) where p is an odd prime; the smallest of these has order 9828.

Pages: 21–31

Keywords: keywords arc-regular graph; one-regular graph; symmetric graph; Cayley graph

Full Text: PDF

References

1. Bosma, W., Cannon, C., Playoust, C.: The MAGMA algebra system I: The user language. J. Symb. Comput. 24, 235-265 (1997)
2. Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Transl. Am. Math. Soc. 158, 247-256 (1971)
3. Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Comb. Theory, Ser. B 42, 196-211 (1987)
4. Conder, M.D.E., Dobcsányi, P.: Trivalent symmetric graphs on up to 768 vertices. J. Comb. Math. Comb. Comput. 40, 41-63 (2002)
5. Conder, M.D.E., Lorimer, P.: Automorphism groups of symmetric graphs of valency
3. J. Comb. Theory, Ser. B 47, 60-72 (1989)
6. Conder, M.D.E., Nedela, R.: Symmetric cubic graphs of small girth. J. Comb. Theory, Ser. B 97, 757-768 (2007)
7. Conder, M.D.E., Nedela, R.: A refined classification of symmetric cubic graphs. J. Algebra 322, 722- 740 (2009)
8. Conder, M.D.E., Praeger, C.E.: Remarks on path-transitivity on finite graphs. Eur. J. Comb. 17, 371- 378 (1996)
9. Dickson, L.E.: Linear Groups, with an Exposition of the Galois Field Theory. Dover, New York (1958)
10. Djoković, D.Ž., Miller, G.L.: Regular groups of automorphisms of cubic graphs. J. Comb. Theory, Ser. B 29, 195-230 (1980)
11. Feng, Y.-Q., Kwak, J.H.: One-regular cubic graphs of order a small number times a prime or a prime square. J. Aust. Math. Soc. 76, 345-356 (2004)
12. Feng, Y.-Q., Kwak, J.H.: Classifying cubic symmetric graphs of order 10p or 10p2. Sci. China Ser. A 49, 300-319 (2006)
13. Feng, Y.-Q., Kwak, J.H.: Cubic symmetric graphs of order a small number times a prime or a prime square. J. Comb. Theory, Ser. B 97, 627-646 (2007)
14. Feng, Y.-Q., Kwak, J.H., Wang, K.S.: Classifying cubic symmetric graphs of order 8p or 8p2. Eur. J. Comb. 26, 1033-1052 (2005)
15. Frucht, R.: A one-regular graph of degree three. Can. J. Math. 4, 240-247 (1952)
16. Gorenstein, D.: Finite Groups, 2nd edn. Chelsea, New York (1980)
17. Giudici, M.: Maximal subgroups of almost simple groups with socle PSL(2, q), preprint. Available at
18. Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)
19. Kwak, J.H., Oh, J.M.: One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer. Acta Math. Sin. Engl. Ser. 22, 1305-1320 (2006)
20. Lorimer, P.: Vertex-transitive graphs: symmetric graphs of prime valency. J. Graph Theory 8, 55-68 (1984)
21. Lukacs, A., Seifter, N.: Finite contractions of graphs with polynomial growth. Eur. J. Comb. 22, 85-90 (2001)
22. Macbeath, A.M.: Generators of the linear fractional groups. In: Number Theory (Proc. Sympos. Pure Math., vol. XII, 1967), pp. 14-32. Am. Math. Soc., Providence (1969)
23. Malni\check c, A., Maruši\check c, D., Poto\check cnik, P.: Elementary abelian covers of graphs. J. Algebr. Comb. 20, 71-97 (2004)
24. Malni\check c, A., Maruši\check c, D., Seifter, N.: Constructing infinite one-regular graphs. Eur. J. Comb. 20, 845- 853 (1999)
25. Maruši\check c, D.: On vertex symmetric digraphs. Discrete Math. 36, 69-81 (1981)
26. Maruši\check c, D.: A family of one-regular graphs of valency
4. Eur. J. Comb. 18, 59-64 (1997)
27. Maruši\check c, D., Scapellato, R.: Classifying vertex-transitive graphs whose order is a product of two primes. Combinatorica 14, 187-201 (1994)
28. Miller, R.C.: The trivalent symmetric graphs of girth at most six. J. Comb. Theory, Ser. B 10, 163-182 (1971)
29. Praeger, C.E., Wang, R.J., Xu, M.Y.: Symmetric graphs of order a product of two distinct primes. J. Comb. Theory, Ser. B 58, 299-318 (1993)
30. Praeger, C.E., Xu, M.Y.: Vertex-primitive graphs of order a product of two distinct primes. J. Comb. Theory, Ser. B 59, 245-266 (1993)
31. Seifter, N., Woess, W.: Approximating graphs with polynomial growth. Glasg. Math. J. 42, 1-8 (2000)
32. Suzuki, M.: Group Theory I. Springer, New York (1982)
33. Tutte, W.T.: A family of cubical graphs. Proc. Camb. Philos. Soc. 43, 459-474 (1947)
34. Tutte, W.T.: On the symmetry of cubic graphs. Can. J. Math. 11, 621-624 (1959)
35. Wang, C.Q., Xu, M.Y.: Non-normal one-regular and 4-valent Cayley graphs of dihedral groups D2n. Eur. J. Comb. 27, 750-766 (2006)
36. Wang, C.Q., Zhou, Z.Y.: 4-valent one-regular normal Cayley graphs of dihedral groups. Acta Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition