The Uniformly 3-Homogeneous Subsets of PGL(2, q)
Jürgen Bierbrauer
DOI: 10.1023/A:1022477413224
Abstract
We use the character-table of PGL(2, q) to determine the subsets of that group acting uniformly 3-homogeneously on the projective line.
Pages: 99–102
Keywords: authentication; secrecy; permutation; group; character-table; perpendicular array
Full Text: PDF
References
1. J. Bierbrauer and Tran van Trung, "Some highly symmetric authentication perpendicular arrays," Designs, Codes and Cryptography 1 (1992), 307-319.
2. J. Bierbrauer, Tran van Trung, "Halving PGL(2, 2f), f odd: a series of cryptocodes," Designs, Codes and Cryptography 1 (1991), 141-148.
3. Roger W. Carter, Finite groups of Lie type, Wiley, 1985.
4. L. Dornhoff, Group representation theory, Dekker, New York, 1971.
5. I. Martin Isaacs, Character theory of finite groups, Academic Press, 1976.
6. E.S. Kramer, D. L. Kreher, R. Rees, and D.R Stinson, "On perpendicular arrays with t > 3," Ars Combinatoria 28(1989), 215-223.
7. N. Steinberg, "The representations of GL(3, q), GL(4, a), PGL(3, q), and PGL(4, a)," Canadian Journal of Mathematics 3 (1951), 225-235.
8. D.R. Stinson, "The combinatorics of authentication and secrecy codes," Journal of Cryptology 2 (1990), 23-49.
2. J. Bierbrauer, Tran van Trung, "Halving PGL(2, 2f), f odd: a series of cryptocodes," Designs, Codes and Cryptography 1 (1991), 141-148.
3. Roger W. Carter, Finite groups of Lie type, Wiley, 1985.
4. L. Dornhoff, Group representation theory, Dekker, New York, 1971.
5. I. Martin Isaacs, Character theory of finite groups, Academic Press, 1976.
6. E.S. Kramer, D. L. Kreher, R. Rees, and D.R Stinson, "On perpendicular arrays with t > 3," Ars Combinatoria 28(1989), 215-223.
7. N. Steinberg, "The representations of GL(3, q), GL(4, a), PGL(3, q), and PGL(4, a)," Canadian Journal of Mathematics 3 (1951), 225-235.
8. D.R. Stinson, "The combinatorics of authentication and secrecy codes," Journal of Cryptology 2 (1990), 23-49.