Noncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at q = 0
Daniel Krob
and Jean-Yves Thibon
DOI: 10.1023/A:1008673127310
Abstract
We present representation theoretical interpretations ofquasi-symmetric functions and noncommutative symmetric functions in terms ofquantum linear groups and Hecke algebras at q = 0. We obtain inthis way a noncommutative realization of quasi-symmetric functions analogousto the plactic symmetric functions of Lascoux and Schützenberger. Thegeneric case leads to a notion of quantum Schur function.
Pages: 339–376
Keywords: quasisymmetric function; quantum group; Hecke algebra
Full Text: PDF
References
1. R.W. Carter, “Representation theory of the 0-Hecke algebra,” J. Algebra 15 (1986), 89-103.
2. I.V. Cherednik, “An analogue of the character formula for Hecke algebras,” Funct. Anal. Appl. 21 (1987), 172-174.
3. E. Date, M. Jimbo, and T. Miwa, “Representations of Uq ( gln) at q = 0 and the Robinson-Schensted correspondence,” in Physics and Mathematics of Strings, Memorial Volume of V. Knizhnik, L. Brink, D. Friedan, and A.M. Polyakov (Eds.), World Scientific, 1990.
4. R. Dipper and S. Donkin, “Quantum GLn,” Proc. London Math. Soc. Vol. 63, pp. 165-211, 1991.
5. G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf, and J.-Y. Thibon, “Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras,” Publ. RIMS, Kyoto Univ. 31 (1995), 179-201.
6. G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibon, Noncommutative Symmetric Functions III: Deformations of Cauchy and Convolution Algebras, LITP preprint 96/08, Paris, 1996.
7. G. Duchamp, D. Krob, B. Leclerc, and J.-Y. Thibon, “Fonctions quasi-symétriques, fonctions symétriques non-commutatives, et alg`ebres de Hecke `a q = 0,” C.R. Acad. Sci. Paris 322 (1996), 107-112.
8. L.D. Faddeev, N.Y. Reshetikin, and L.A. Takhtadzhyan, “Quantization of Lie groups and Lie algebras,” Leningrad Math. J. 1 (1990), 193-225.
9. I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, and J.-Y. Thibon, “Noncommutative symmetric functions,” Adv. in Math. 112 (1995), 218-348.
10. I. Gessel, “Multipartite P-partitions and inner product of skew Schur functions,” Contemp. Math. 34 (1984), 289-301.
11. J.A. Green, “Polynomial representations of GLn,” Springer Lecture Notes in Math. 830, 1980.
12. N. Hoefsmit, “Representations of Hecke algebras of finite groups with BN-pairs of classical types,” Thesis, University of British Columbia, 1974.
13. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, 1990.
14. N. Iwahori, On the structure of the Hecke ring of a Chevalley group over a finite field,” J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215-236.
15. M. Jimbo, “A q-analogue of U ( gl( N + 1)), Hecke algebra and the Yang-Baxter equation,” Lett. Math. Phys. 11 (1986), 247-252.
16. M. Kashiwara, “On crystal bases of the q-analogue of universal enveloping algebras,” Duke Math. J. 63 (1991), 465-516. P1: RPS/PCY P2: MVG/ASH QC: MVG Journal of Algebraic Combinatorics KL472-03-Krob August 6, 1997 10:34 376 KROB AND THIBON
17. M. Kashiwara and T. Nakashima, “Crystal graphs for representations of the q-analogue of classical Lie algebras,” J. Algebra 165 (1994), 295-345.
18. S.V. Kerov and A.M. Vershik, “Characters and realizations of representations of an infinite dimensional Hecke algebra, and knot invariants,” Soviet Math. Dokl. 38 (1989), 134-137.
19. R.C. King and B.G. Wybourne, “Representations and trace of the Hecke algebra Hn( q) of type An - 1,” J. Math. Phys. 33 (1992), 4-14.
20. D.E. Knuth, “Permutations, matrices and generalized Young tableaux,” Pacific J. Math. 34 (1970), 709-727.
21. D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative Symmetric Functions II: Transformations of Alphabets, International J. Alg. Comput. 7 (1997), 181-264.
22. A. Lascoux, “Anneau de Grothendieck de la variété de drapeaux,” in The Grothendieck Festschrift, P. Cartier et al. (Eds.), Birkh\ddot auser, pp. 1-34, 1990.
23. A. Lascoux and M.P. Sch\ddot utzenberger, “Le mono\ddot ıde plaxique,” Quad. del. Ric. Sci. 109 (1981), 129-156.
24. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Crystal graphs and q-analogues of weight multiplicities for the root system An,” Lett. Math. Phys. 35 (1995), 359-374.
25. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Une conjecture pour le calcul des matrices de décomposition des alg`ebres de Hecke de type A aux racines de l'unité,” C.R. Acad. Sci. Paris, Ser. A 321, (1995), 511-516.
26. B. Leclerc and J.-Y. Thibon, “The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0,” Electronic J. Combinatorics 3 (1996), # 11.
27. P. Littelman, “A Plactic Algebra for Semisimple Lie Algebras,” Adv. in Math. 124 (1996), 312-331.
28. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford, 1979; 2nd edition, 1995.
29. C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177 (1995), 967-982.
30. C. Malvenuto and C. Reutenauer, “Plethysm and Conjugation of Quasi-Symmetric Functions,” preprint, 1995.
31. P.N. Norton, “0-Hecke algebras,” J. Austral. Math. Soc. Ser. A 27 (1979), 337-357.
32. A. Ram, “A Frobenius formula for the characters of the Hecke algebras,” Invent. Math. 106 (1991), 461-488.
33. C. Reutenauer, Free Lie Algebras, Oxford, 1993.
34. C. Schensted, “Longest increasing and decreasing subsequences,” Canad. J. Math. 13 (1961), 179-191.
35. L. Solomon, “A Mackey formula in the group ring of a Coxeter group,” J. Algebra 41 (1976), 255-268.
36. A.J. Starkey, “Characters of the generic Hecke algebra of a system of BN-pairs,” Thesis, University of Warwick, 1975.
37. K. Ueno and Y. Shibukawa, “Character table of Hecke algebra of type AN+1 and representations of the quantum group Uq ( gln+1),” in Infinite Analysis, A. Tsuchiya, T. Eguchi, and M. Jimbo (Eds.), World Scientific, Singapore, Part B, pp. 977-984, 1992.
2. I.V. Cherednik, “An analogue of the character formula for Hecke algebras,” Funct. Anal. Appl. 21 (1987), 172-174.
3. E. Date, M. Jimbo, and T. Miwa, “Representations of Uq ( gln) at q = 0 and the Robinson-Schensted correspondence,” in Physics and Mathematics of Strings, Memorial Volume of V. Knizhnik, L. Brink, D. Friedan, and A.M. Polyakov (Eds.), World Scientific, 1990.
4. R. Dipper and S. Donkin, “Quantum GLn,” Proc. London Math. Soc. Vol. 63, pp. 165-211, 1991.
5. G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf, and J.-Y. Thibon, “Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras,” Publ. RIMS, Kyoto Univ. 31 (1995), 179-201.
6. G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibon, Noncommutative Symmetric Functions III: Deformations of Cauchy and Convolution Algebras, LITP preprint 96/08, Paris, 1996.
7. G. Duchamp, D. Krob, B. Leclerc, and J.-Y. Thibon, “Fonctions quasi-symétriques, fonctions symétriques non-commutatives, et alg`ebres de Hecke `a q = 0,” C.R. Acad. Sci. Paris 322 (1996), 107-112.
8. L.D. Faddeev, N.Y. Reshetikin, and L.A. Takhtadzhyan, “Quantization of Lie groups and Lie algebras,” Leningrad Math. J. 1 (1990), 193-225.
9. I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, and J.-Y. Thibon, “Noncommutative symmetric functions,” Adv. in Math. 112 (1995), 218-348.
10. I. Gessel, “Multipartite P-partitions and inner product of skew Schur functions,” Contemp. Math. 34 (1984), 289-301.
11. J.A. Green, “Polynomial representations of GLn,” Springer Lecture Notes in Math. 830, 1980.
12. N. Hoefsmit, “Representations of Hecke algebras of finite groups with BN-pairs of classical types,” Thesis, University of British Columbia, 1974.
13. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, 1990.
14. N. Iwahori, On the structure of the Hecke ring of a Chevalley group over a finite field,” J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215-236.
15. M. Jimbo, “A q-analogue of U ( gl( N + 1)), Hecke algebra and the Yang-Baxter equation,” Lett. Math. Phys. 11 (1986), 247-252.
16. M. Kashiwara, “On crystal bases of the q-analogue of universal enveloping algebras,” Duke Math. J. 63 (1991), 465-516. P1: RPS/PCY P2: MVG/ASH QC: MVG Journal of Algebraic Combinatorics KL472-03-Krob August 6, 1997 10:34 376 KROB AND THIBON
17. M. Kashiwara and T. Nakashima, “Crystal graphs for representations of the q-analogue of classical Lie algebras,” J. Algebra 165 (1994), 295-345.
18. S.V. Kerov and A.M. Vershik, “Characters and realizations of representations of an infinite dimensional Hecke algebra, and knot invariants,” Soviet Math. Dokl. 38 (1989), 134-137.
19. R.C. King and B.G. Wybourne, “Representations and trace of the Hecke algebra Hn( q) of type An - 1,” J. Math. Phys. 33 (1992), 4-14.
20. D.E. Knuth, “Permutations, matrices and generalized Young tableaux,” Pacific J. Math. 34 (1970), 709-727.
21. D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative Symmetric Functions II: Transformations of Alphabets, International J. Alg. Comput. 7 (1997), 181-264.
22. A. Lascoux, “Anneau de Grothendieck de la variété de drapeaux,” in The Grothendieck Festschrift, P. Cartier et al. (Eds.), Birkh\ddot auser, pp. 1-34, 1990.
23. A. Lascoux and M.P. Sch\ddot utzenberger, “Le mono\ddot ıde plaxique,” Quad. del. Ric. Sci. 109 (1981), 129-156.
24. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Crystal graphs and q-analogues of weight multiplicities for the root system An,” Lett. Math. Phys. 35 (1995), 359-374.
25. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Une conjecture pour le calcul des matrices de décomposition des alg`ebres de Hecke de type A aux racines de l'unité,” C.R. Acad. Sci. Paris, Ser. A 321, (1995), 511-516.
26. B. Leclerc and J.-Y. Thibon, “The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0,” Electronic J. Combinatorics 3 (1996), # 11.
27. P. Littelman, “A Plactic Algebra for Semisimple Lie Algebras,” Adv. in Math. 124 (1996), 312-331.
28. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford, 1979; 2nd edition, 1995.
29. C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177 (1995), 967-982.
30. C. Malvenuto and C. Reutenauer, “Plethysm and Conjugation of Quasi-Symmetric Functions,” preprint, 1995.
31. P.N. Norton, “0-Hecke algebras,” J. Austral. Math. Soc. Ser. A 27 (1979), 337-357.
32. A. Ram, “A Frobenius formula for the characters of the Hecke algebras,” Invent. Math. 106 (1991), 461-488.
33. C. Reutenauer, Free Lie Algebras, Oxford, 1993.
34. C. Schensted, “Longest increasing and decreasing subsequences,” Canad. J. Math. 13 (1961), 179-191.
35. L. Solomon, “A Mackey formula in the group ring of a Coxeter group,” J. Algebra 41 (1976), 255-268.
36. A.J. Starkey, “Characters of the generic Hecke algebra of a system of BN-pairs,” Thesis, University of Warwick, 1975.
37. K. Ueno and Y. Shibukawa, “Character table of Hecke algebra of type AN+1 and representations of the quantum group Uq ( gln+1),” in Infinite Analysis, A. Tsuchiya, T. Eguchi, and M. Jimbo (Eds.), World Scientific, Singapore, Part B, pp. 977-984, 1992.