JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 8, Issue 1, Article 25
 
Approximation of the Dilogarithm Function

    Authors: Mehdi Hassani,  
    Keywords: Special function, Dilogarithm function, Digamma function, Polygamma function, Polylogarithm function, Lerch zeta function.  
    Date Received: 15/04/06  
    Date Accepted: 03/01/07  
    Subject Codes:

33E20.

 
    Editors: Alexandru Lupas (1942-2007),  
 
    Abstract:

In this short note, we approximate Dilogarithm function, defined by $ $ mathrm{ dilog}(x)=$ int_1^{x}$ frac{$ log t}{1-t}dt$. Letting

$ displaystyle $ mathcal{D}(x,N)=-$ frac{1}{2}$ log^2 x-$ frac{$ pi^2}{6}+$ sum_{n=1}^N $ frac{ $ frac{1}{n^2}+$ frac{1}{n}$ log x}{x^n}, $
we show that for every $ x>1$, the inequalities

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login