Journal of Lie Theory, Vol. 10, No. 1, pp. 207-212 (2000)

Fitting decomposition of Casimir operators of quadratic Lie superalgebras.

Hedi Benamor and Saïd Benayadi

Université de Metz,
Département de Mathématiques
Ile du Saulcy, 57045 METZ Cedex 01
France
benamor@poncelet.sciences.univ-metz.fr
benayadi@poncelet.sciences.univ-metz.fr

Abstract: Semisimple Lie superalgebras are Lie superalgebras with non-degenerate Killing forms. In this paper we show that a quadratic Lie superalgebra $({\frak g}, B)$ is semisimple if and only if its Casimir operator, $\Omega_B$, associated to $B$ is invertible. This result anables us to characterize quadratic Lie superalgebras with nilpotent Casimir operators: $\Omega_B$ is nilpotent if and only if ${\frak g}$ is a Lie superalgebra without any nonzero semisimple ideal.

Full text of the article:


[Previous Article] [Next Article] [Contents of this Number]
© 2000--2001 ELibM for the EMIS Electronic Edition