EMIS ELibM Electronic Journals Publications de l'Institut Mathématique, Nouvelle Série
Vol. 97(111), pp. 181–186 (2015)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home


Pick a mirror

 

Centers of Skew Polynomial Rings

Waldo Arriagada and Hugo Ramirez

Department of Applied Mathematics and Sciences, Khalifa University, Al Zafranah, Abu Dhabi, United Arab Emirates ;Instituto de Ciencias Fisicas y Matematicas, Universidad Austral de Chile, Valdivia, Chile

Abstract: We determine the center $\mathcal C(K[x;\delta])$ of the ring of skew polynomials $K[x;\delta]$, where $K$ is a field and $\delta$ is a non-zero derivation over $K$. We prove that $\mathcal C(K[x;\delta])=\ker\delta,$ if $\delta$ is transcendental over $K$. On the contrary, if $\delta$ is algebraic over $K$, then $\mathcal C(K[x;\delta])=(\ker\delta)[\eta(x)]$. The term $\eta(x)$ is the minimal polynomial of $\delta$ over $K$.

Keywords: derivation; skew polynomial; center; ring; commutator

Classification (MSC2000): 12E15; 12E10

Full text of the article: (for faster download, first choose a mirror)


Electronic fulltext finalized on: 16 Apr 2015. This page was last modified: 21 Apr 2015.

© 2015 Mathematical Institute of the Serbian Academy of Science and Arts
© 2015 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition