Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 045, 47 pages      arXiv:1606.05638      https://doi.org/10.3842/SIGMA.2020.045

A Lightcone Embedding of the Twin Building of a Hyperbolic Kac-Moody Group

Lisa Carbone a, Alex J. Feingold b and Walter Freyn c
a)  Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854, USA
b)  Department of Mathematical Sciences, The State University of New York, Binghamton, New York 13902-6000, USA
c)  Fachbereich Mathematik, Technical University of Darmstadt, Darmstadt, Germany

Received July 23, 2019, in final form May 11, 2020; Published online May 29, 2020

Abstract
Let $A$ be a symmetrizable hyperbolic generalized Cartan matrix with Kac-Moody algebra $\mathfrak g=\mathfrak g(A)$ and (adjoint) Kac-Moody group $G = G(A)=\langle \exp({\rm ad}(t e_i)), \exp({\rm ad}(t f_i)) \,|\, t\in {\mathbb C} \rangle $ where $e_i$ and $f_i$ are the simple root vectors. Let $\big(B^+, B^-, N\big)$ be the twin $BN$-pair naturally associated to $G$ and let $\big(\mathcal B^+,\mathcal B^-\big)$ be the corresponding twin building with Weyl group $W$ and natural $G$-action, which respects the usual $W$-valued distance and codistance functions. This work connects the twin building $\big(\mathcal B^+,\mathcal B^-\big)$ of $G$ and the Kac-Moody algebra $\mathfrak g=\mathfrak g(A)$ in a new geometrical way. The Cartan-Chevalley involution, $\omega$, of $\mathfrak g$ has fixed point real subalgebra, $\mathfrak k$, the 'compact' (unitary) real form of $\mathfrak g$, and $\mathfrak k$ contains the compact Cartan $\mathfrak t = \mathfrak k \cap \mathfrak h$. We show that a real bilinear form $(\cdot,\cdot)$ is Lorentzian with signatures $(1, \infty)$ on $\mathfrak k$, and $(1, n -1)$ on $\mathfrak t$. We define $\{k \in \mathfrak k \,|\, (k, k) \leq 0\}$ to be the lightcone of $\mathfrak k$, and similarly for $\mathfrak t$. Let $K$ be the compact (unitary) real form of $G$, that is, the fixed point subgroup of the lifting of $\omega$ to $G$. We construct a $K$-equivariant embedding of the twin building of $G$ into the lightcone of the compact real form $\mathfrak k$ of $\mathfrak g$. Our embedding gives a geometric model of part of the twin building, where each half consists of infinitely many copies of a $W$-tessellated hyperbolic space glued together along hyperplanes of the faces. Locally, at each such face, we find an ${\rm SU}(2)$-orbit of chambers stabilized by ${\rm U}(1)$ which is thus parametrized by a Riemann sphere ${\rm SU}(2)/{\rm U}(1)\cong S^2$. For $n = 2$ the twin building is a twin tree. In this case, we construct our embedding explicitly and we describe the action of the real root groups on the fundamental twin apartment. We also construct a spherical twin building at infinity, and construct an embedding of it into the set of rays on the boundary of the lightcone.

Key words: Kac-Moody Lie algebra; Kac-Moody group; twin Tits building.

pdf (1063 kb)   tex (1466 kb)  

References

  1. Abramenko P., Brown K.S., Buildings. Theory and applications, Graduate Texts in Mathematics, Vol. 248, Springer, New York, 2008.
  2. Andersen K.K.S., Carbone L., Penta D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, J. Comb. Number Theory 2 (2010), 245-278.
  3. Back-Valente V., Bardy-Panse N., Ben Messaoud H., Rousseau G., Formes presque-déployées des algèbres de Kac-Moody: classification et racines relatives, J. Algebra 171 (1995), 43-96.
  4. Berman S., Real forms of universal Kac-Moody Lie algebras, Algebras Groups Geom. 2 (1985), 10-25.
  5. Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. USA 83 (1986), 3068-3071.
  6. Caprace P.E., ''Abstract'' homomorphisms of split Kac-Moody groups, Mem. Amer. Math. Soc. 198 (2009), xvi+84 pages.
  7. Carbone L., Garland H., Existence of lattices in Kac-Moody groups over finite fields, Commun. Contemp. Math. 5 (2003), 813-867.
  8. Carbone L., Kownacki M., Murray S.H., Srinivasan S., Commutator relations and structure constants for rank 2 Kac-Moody algebras, J. Algebra, to appear, arXiv:1804.02308.
  9. Chevalley C., Sur certains groupes simples, Tohoku Math. J. 7 (1955), 14-66.
  10. Dadok J., Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), 125-137.
  11. Damour T., Henneaux M., Nicolai H., $E_{10}$ and a small tension expansion of M theory, Phys. Rev. Lett. 89 (2002), 221601, 4 pages, arXiv:hep-th/0207267.
  12. Damour T., Hillmann C., Fermionic Kac-Moody billiards and supergravity, J. High Energy Phys. 2009 (2009), no. 8, 100, 55 pages, arXiv:0906.3116.
  13. Damour T., Kleinschmidt A., Nicolai H., Sugawara-type constraints in hyperbolic coset models, Comm. Math. Phys. 302 (2011), 755-788, arXiv:0912.3491.
  14. Damour T., Spindel P., Quantum supersymmetric cosmology and its hidden Kac-Moody structure, Classical Quantum Gravity 30 (2013), 162001, 7 pages, arXiv:1304.6381.
  15. De Medts T., Gramlich R., Horn M., Iwasawa decompositions of split Kac-Moody groups, J. Lie Theory 19 (2009), 311-337.
  16. Eberlein P.B., Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
  17. Feingold A.J., A hyperbolic GCM Lie algebra and the Fibonacci numbers, Proc. Amer. Math. Soc. 80 (1980), 379-385.
  18. Feingold A.J., Frenkel I.B., A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus $2$, Math. Ann. 263 (1983), 87-144.
  19. Freyn W., Kac-Moody symmetric spaces and universal twin buildings, Ph.D. Thesis, Universität Augsburg, 2009.
  20. Freyn W., Functional analytic methods for cities, unpublished, 2011.
  21. Freyn W., Kac-Moody geometry, in Global Differential Geometry, Springer Proc. Math., Vol. 17, Springer, Heidelberg, 2012, 55-92, arXiv:1003.4435.
  22. Freyn W., Kac-Moody groups, infinite dimensional differential geometry and cities, Asian J. Math. 16 (2012), 607-636.
  23. Freyn W., Tame Fréchet structures for affine Kac-Moody groups, Asian J. Math. 18 (2014), 885-928.
  24. Freyn W., Orthogonal symmetric affine Kac-Moody algebras, Trans. Amer. Math. Soc. 367 (2015), 7133-7159, arXiv:1305.3137.
  25. Freyn W., Tame Fréchet submanifolds of co-Banach type, Forum Math. 27 (2015), 2467-2490, arXiv:1305.3145.
  26. Freyn W., Hartnick T., Horn M., Köhl R., Kac-Moody symmetric spaces, Münster J. Math. 13 (2020), 1-114, arXiv:1702.08426.
  27. Gabber O., Kac V.G., On defining relations of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 185-189.
  28. Groß C., $s$-representations for involutions on affine Kac-Moody algebras are polar, Manuscripta Math. 103 (2000), 339-350.
  29. Hainke G., Köhl R., Levy P., Generalized spin representations, Münster J. Math. 8 (2015), 181-210, arXiv:1110.5576.
  30. Heintze E., Toward symmetric spaces of affine Kac-Moody type, Int. J. Geom. Methods Mod. Phys. 3 (2006), 881-898.
  31. Heintze E., Palais R.S., Terng C.L., Thorbergsson G., Hyperpolar actions on symmetric spaces, in Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, 214-245.
  32. Helgason S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, Vol. 34, Amer. Math. Soc., Providence, RI, 2001.
  33. Horn M., Involutions of Kac-Moody groups, Technische Universität Darmstadt, 2009.
  34. Julia B., Kac-Moody symmetry of gravitation and supergravity theories, in Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982), Lectures in Appl. Math., Vol. 21, Amer. Math. Soc., Providence, RI, 1985, 355-373.
  35. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  36. Kac V.G., Moody R.V., Wakimoto M., On $E_{10}$, in Differential Geometrical Methods in Theoretical Physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 250, Kluwer Acad. Publ., Dordrecht, 1988, 109-128.
  37. Kac V.G., Peterson D.H., Defining relations of certain infinite-dimensional groups, Astérisque (1985), Numéro Hors Série, 165-208.
  38. Kac V.G., Peterson D.H., On geometric invariant theory for infinite-dimensional groups, in Algebraic Groups Utrecht 1986, Lecture Notes in Math., Vol. 1271, Springer, Berlin, 1987, 109-142.
  39. Kac V.G., Wang S.P., On automorphisms of Kac-Moody algebras and groups, Adv. Math. 92 (1992), 129-195.
  40. Kang S.-J., Melville D.J., Rank $2$ symmetric hyperbolic Kac-Moody algebras, Nagoya Math. J. 140 (1995), 41-75.
  41. Kleinschmidt A., Nicolai H., On higher spin realizations of $K(E_{10})$, J. High Energy Phys. 2013 (2013), no. 8, 041, 28 pages, arXiv:1307.0413.
  42. Kleinschmidt A., Nicolai H., Palmkvist J., Modular realizations of hyperbolic Weyl groups, Adv. Theor. Math. Phys. 16 (2012), 97-148, arXiv:1010.2212.
  43. Kramer L., Loop groups and twin buildings, Geom. Dedicata 92 (2002), 145-178, arXiv:math.GT/0109128.
  44. Kumar S., Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002.
  45. Lepowsky J., Moody R.V., Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces, Math. Ann. 245 (1979), 63-88.
  46. Marquis T., An introduction to Kac-Moody groups over fields, EMS Textbooks in Mathematics, European Math. Soc. (EMS), Zürich, 2018.
  47. Mitchell S.A., Quillen's theorem on buildings and the loops on a symmetric space, Enseign. Math. 34 (1988), 123-166.
  48. Moody R.V., Pianzola A., Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1995.
  49. Morita J., Root strings with three or four real roots in Kac-Moody root systems, Tohoku Math. J. 40 (1988), 645-650.
  50. Penta D.A., Decomposition of the rank 3 Kac-Moody Lie algebra F with respect to the rank 2 hyperbolic subalgebra Fib, Ph.D. Thesis, State University of New York at Binghamton, 2016, arXiv:1605.06901.
  51. Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986.
  52. Rémy B., Groupes de Kac-Moody déployés et presque déployés, Astérisque 277 (2002), viii+348 pages.
  53. Ronan M., Lectures on buildings: updated and revised, University of Chicago Press, Chicago, 2009.
  54. Ronan M.A., Tits J., Twin trees. I, Invent. Math. 116 (1994), 463-479.
  55. Tichai A., Some lightcone embeddings of Lorentzian Kac-Moody algebras, Masters Thesis, Technische Universität Darmstadt, 2014.
  56. Tits J., Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. Sér. A 38 (1986), 367-387.
  57. Tits J., Théorie des groupes, Ann. Collège France 87 (1986), 89-98.
  58. Tits J., Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987), 542-573.
  59. West P., $E_{11}$ and M theory, Classical Quantum Gravity 18 (2001), 4443-4460, arXiv:hep-th/0104081.

Previous article  Next article  Contents of Volume 16 (2020)