Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 081, 28 pages      arXiv:2003.12820      https://doi.org/10.3842/SIGMA.2020.081
Contribution to the Special Issue on Primitive Forms and Related Topics in honor of Kyoji Saito for his 77th birthday

Integral Structure for Simple Singularities

Todor Milanov and Chenghan Zha
Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Received May 27, 2020, in final form August 09, 2020; Published online August 22, 2020

Abstract
We compute the image of the Milnor lattice of an ADE singularity under a period map. We also prove that the Milnor latticecan be identified with an appropriate relative $K$-group defined through the Berglund-Hübsch dual of the corresponding singularity.

Key words: simple singularities; period map; mirror symmetry; topological K-theory.

pdf (507 kb)   tex (32 kb)  

References

  1. Arnol'd V.I., Guseǐn-Zade S.M., Varchenko A.N., Singularities of differentiable maps, Vol. II. Monodromy and asymptotics of integrals, Monographs in Mathematics, Vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988.
  2. Atiyah M., Segal G., On equivariant Euler characteristics, J. Geom. Phys. 6 (1989), 671-677.
  3. Berglund P., Hübsch T., A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993), 377-391, arXiv:hep-th/9201014.
  4. Chiodo A., Iritani H., Ruan Y., Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127-216, arXiv:1201.0813.
  5. Chiodo A., Nagel J., The hybrid Landau-Ginzburg models of Calabi-Yau complete intersections, in Topological Recursion and its Influence in Analysis, Geometry, and Topology, Proc. Sympos. Pure Math., Vol. 100, Amer. Math. Soc., Providence, RI, 2018, 103-117, arXiv:1506.02989.
  6. Fan H., Jarvis T., Ruan Y., The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013), 1-106, arXiv:0712.4021.
  7. Frenkel E., Givental A., Milanov T., Soliton equations, vertex operators, and simple singularities, Funct. Anal. Other Math. 3 (2010), 47-63, arXiv:0909.4032.
  8. Givental A.B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, arXiv:math.AG/0108100.
  9. Givental A.B., Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001), 1265-1286, arXiv:math.AG/0008067.
  10. Givental A.B., Milanov T.E., Simple singularities and integrable hierarchies, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser Boston, Boston, MA, 2005, 173-201, arXiv:math.AG/0307176.
  11. Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, Vol. 151, Cambridge University Press, Cambridge, 2002.
  12. Iritani H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079, arXiv:0903.1463.
  13. Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23.
  14. Krawitz M., FJRW rings and Landau-Ginzburg mirror symmetry, Ph.D. Thesis, University of Michigan, 2010.
  15. Minami H., A Künneth formula for equivariant $K$-theory, Osaka Math. J. 6 (1969), 143-146.
  16. Saito K., On periods of primitive integrals, I, Preprint, Research Institute for Mathematical Sciences, Kyoto University, 1982.
  17. Satake I., On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42 (1956), 359-363.
  18. Segal G., Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. (1968), 129-151.
  19. Teleman C., The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525-588, arXiv:0712.0160.

Previous article  Next article  Contents of Volume 16 (2020)