Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 082, 21 pages      arXiv:1901.05161      https://doi.org/10.3842/SIGMA.2020.082
Contribution to the Special Issue on Noncommutative Manifolds and their Symmetries in honour of Giovanni Landi

On the Unbounded Picture of $KK$-Theory

Jens Kaad
Department of Mathematics and Computer Science, The University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Received October 22, 2019, in final form August 05, 2020; Published online August 22, 2020

Abstract
In the founding paper on unbounded $KK$-theory it was established by Baaj and Julg that the bounded transform, which associates a class in $KK$-theory to any unbounded Kasparov module, is a surjective homomorphism (under a separability assumption). In this paper, we provide an equivalence relation on unbounded Kasparov modules and we thereby describe the kernel of the bounded transform. This allows us to introduce a notion of topological unbounded $KK$-theory, which becomes isomorphic to $KK$-theory via the bounded transform. The equivalence relation is formulated entirely at the level of unbounded Kasparov modules and consists of homotopies together with an extra degeneracy condition. Our degenerate unbounded Kasparov modules are called spectrally decomposable since they admit a decomposition into a part with positive spectrum and a part with negative spectrum.

Key words: $KK$-theory; unbounded $KK$-theory; equivalence relations; bounded transform.

pdf (418 kb)   tex (25 kb)  

References

  1. Atiyah M.F., Global theory of elliptic operators, in Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), University of Tokyo Press, Tokyo, 1970, 21-30.
  2. Baaj S., Julg P., Théorie bivariante de Kasparov et opérateurs non bornés dans les $C^*$-modules hilbertiens, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 875-878.
  3. Blackadar B., $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, Vol. 5, Cambridge University Press, Cambridge, 1998.
  4. Brain S., Mesland B., van Suijlekom W.D., Gauge theory for spectral triples and the unbounded Kasparov product, J. Noncommut. Geom. 10 (2016), 135-206, arXiv:1306.1951.
  5. Brown L.G., Douglas R.G., Fillmore P.A., Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. 105 (1977), 265-324.
  6. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  7. Connes A., Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 182 (1996), 155-176, arXiv:hep-th/9603053.
  8. Deeley R.J., Goffeng M., Mesland B., The bordism group of unbounded $KK$-cycles, J. Topol. Anal. 10 (2018), 355-400, arXiv:1503.07398.
  9. Hilsum M., Bordism invariance in $KK$-theory, Math. Scand. 107 (2010), 73-89.
  10. Jensen K.K., Thomsen K., Elements of $KK$-theory, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1991.
  11. Kaad J., Morita invariance of unbounded bivariant $K$-theory, arXiv:1612.08405.
  12. Kaad J., Differentiable absorption of Hilbert $C^*$-modules, connections, and lifts of unbounded operators, J. Noncommut. Geom. 11 (2017), 1037-1068, arXiv:1407.1389.
  13. Kaad J., Lesch M., A local global principle for regular operators in Hilbert $C^*$-modules, J. Funct. Anal. 262 (2012), 4540-4569, arXiv:1107.2372.
  14. Kaad J., Lesch M., Spectral flow and the unbounded Kasparov product, Adv. Math. 248 (2013), 495-530, arXiv:1110.1472.
  15. Kaad J., van Suijlekom W.D., Factorization of Dirac operators on toric noncommutative manifolds, J. Geom. Phys. 132 (2018), 282-300, arXiv:1803.08921.
  16. Kasparov G.G., Topological invariants of elliptic operators. I. $K$-homology, Math. USSR-Izv. 9 (1975), 751-792.
  17. Kasparov G.G., Hilbert $C^*$-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150.
  18. Kasparov G.G., The operator $K$-functor and extensions of $C^*$-algebras, Math. USSR-Izv. 16 (1980), 513-572.
  19. Kucerovsky D., The $KK$-product of unbounded modules, K-Theory 11 (1997), 17-34.
  20. Kucerovsky D., A lifting theorem giving an isomorphism of $KK$-products in bounded and unbounded $KK$-theory, J. Operator Theory 44 (2000), 255-275.
  21. Lance E.C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, Vol. 210, Cambridge University Press, Cambridge, 1995.
  22. Lesch M., Mesland B., Sums of regular self-adjoint operators in Hilbert-$C^*$-modules, J. Math. Anal. Appl. 472 (2019), 947-980, arXiv:1803.08295.
  23. Mesland B., Unbounded bivariant $K$-theory and correspondences in noncommutative geometry, J. Reine Angew. Math. 691 (2014), 101-172, arXiv:0904.4383.
  24. Mesland B., Rennie A., Nonunital spectral triples and metric completeness in unbounded $KK$-theory, J. Funct. Anal. 271 (2016), 2460-2538, arXiv:1502.04520.
  25. Skandalis G., Some remarks on Kasparov theory, J. Funct. Anal. 56 (1984), 337-347.
  26. van den Dungen K., Mesland B., Homotopy equivalence in unbounded $KK$-theory, Ann. K-Theory 5 (2020), 501-537, arXiv:1907.04049.
  27. Woronowicz S.L., Unbounded elements affiliated with $C^*$-algebras and noncompact quantum groups, Comm. Math. Phys. 136 (1991), 399-432.
  28. Woronowicz S.L., Napiórkowski K., Operator theory in the $C^*$-algebra framework, Rep. Math. Phys. 31 (1992), 353-371.

Previous article  Next article  Contents of Volume 16 (2020)