Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 013, 20 pages      arXiv:2001.04087      https://doi.org/10.3842/SIGMA.2021.013
Contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov on his 75th Birthday

Curvature-Dimension Condition Meets Gromov's $n$-Volumic Scalar Curvature

Jialong Deng
Mathematisches Institut, Georg-August-Universität, Göttingen, Germany

Received July 29, 2020, in final form January 23, 2021; Published online February 05, 2021

Abstract
We study the properties of the $n$-volumic scalar curvature in this note. Lott-Sturm-Villani's curvature-dimension condition ${\rm CD}(\kappa,n)$ was showed to imply Gromov's $n$-volumic scalar curvature $\geq n\kappa$ under an additional $n$-dimensional condition and we show the stability of $n$-volumic scalar curvature $\geq \kappa$ with respect to smGH-convergence. Then we propose a new weighted scalar curvature on the weighted Riemannian manifold and show its properties.

Key words: curvature-dimension condition; $n$-volumic scalar curvature; stability; weighted scalar curvature ${\rm Sc}_{\alpha, \beta}$.

pdf (473 kb)   tex (28 kb)  

References

  1. Abedin F., Corvino J., On the $P$-scalar curvature, J. Geom. Anal. 27 (2017), 1589-1623.
  2. Ambrosio L., Gigli N., Savaré G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014), 1405-1490, arXiv:1109.0222.
  3. Athreya S., Löhr W., Winter A., The gap between Gromov-vague and Gromov-Hausdorff-vague topology, Stochastic Process. Appl. 126 (2016), 2527-2553, arXiv:1407.6309.
  4. Bray H.L., The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature, Ph.D. Thesis, Stanford University, 1997, arXiv:0902.3241.
  5. Brendle S., Rigidity phenomena involving scalar curvature, in Surveys in Differential Geometry, Surv. Differ. Geom., Vol. 17, Int. Press, Boston, MA, 2012, 179-202, arXiv:1008.3097.
  6. Case J.S., Conformal invariants measuring the best constants for Gagliardo-Nirenberg-Sobolev inequalities, Calc. Var. Partial Differential Equations 48 (2013), 507-526, arXiv:1112.3977.
  7. Chang S.-Y.A., Gursky M.J., Yang P., Conformal invariants associated to a measure, Proc. Natl. Acad. Sci. USA 103 (2006), 2535-2540.
  8. Cheng X., Mejia T., Zhou D., Stability and compactness for complete $f$-minimal surfaces, Trans. Amer. Math. Soc. 367 (2015), 4041-4059, arXiv:1210.8076.
  9. Crowley D., Schick T., The Gromoll filtration, $KO$-characteristic classes and metrics of positive scalar curvature, Geom. Topol. 17 (2013), 1773-1789, arXiv:1204.6474.
  10. Fan E.M., Topology of three-manifolds with positive $P$-scalar curvature, Proc. Amer. Math. Soc. 136 (2008), 3255-3261.
  11. Fischer-Colbrie D., Schoen R., The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199-211.
  12. Gigli N., On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc. 236 (2015), vi+91 pages, arXiv:1205.6622.
  13. Goette S., Semmelmann U., Scalar curvature estimates for compact symmetric spaces, Differential Geom. Appl. 16 (2002), 65-78, arXiv:math.DG/0010199.
  14. Gray A., Vanhecke L., Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198.
  15. Gromov M., Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional Analysis on the Eve of the 21st Century, Vol. II (New Brunswick, NJ, 1993), Progr. Math., Vol. 132, Birkhäuser Boston, Boston, MA, 1996, 1-213.
  16. Gromov M., Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), 178-215.
  17. Gromov M., Dirac and Plateau billiards in domains with corners, Cent. Eur. J. Math. 12 (2014), 1109-1156, arXiv:1811.04318.
  18. Gromov M., 101 questions, problems and conjectures around scalar curvature, 2017, available at https://www.ihes.fr/~gromov/wp-content/uploads/2018/08/101-problemsOct1-2017.pdf.
  19. Gromov M., Metric inequalities with scalar curvature, Geom. Funct. Anal. 28 (2018), 645-726, arXiv:1710.04655.
  20. Gromov M., Four lectures on scalar curvature, arXiv:1908.10612.
  21. Gromov M., Lawson Jr. H.B., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83-196.
  22. Hanke B., Pape D., Schick T., Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier (Grenoble) 65 (2015), 2681-2710, arXiv:1402.4094.
  23. Hitchin N., Harmonic spinors, Adv. Math. 14 (1974), 1-55.
  24. Kazdan J.L., Deformation to positive scalar curvature on complete manifolds, Math. Ann. 261 (1982), 227-234.
  25. Kazdan J.L., Warner F.W., Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113-134.
  26. Lasserre J.B., On the setwise convergence of sequences of measures, J. Appl. Math. Stochastic Anal. 10 (1997), 131-136.
  27. Llarull M., Sharp estimates and the Dirac operator, Math. Ann. 310 (1998), 55-71.
  28. Lučić D., Pasqualetto E., Infinitesimal Hilbertianity of weighted Riemannian manifolds, Canad. Math. Bull. 63 (2020), 118-140, arXiv:1809.05919.
  29. Ohta S., On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), 805-828.
  30. Ohta S., Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211-249.
  31. Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
  32. Petrunin A., Alexandrov meets Lott-Villani-Sturm, Münster J. Math. 4 (2011), 53-64, arXiv:1003.5948.
  33. Qian Z., Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), 235-242.
  34. Rosales C., Cañete A., Bayle V., Morgan F., On the isoperimetric problem in Euclidean space with density, Calc. Var. Partial Differential Equations 31 (2008), 27-46, arXiv:math.DG/0602135.
  35. Rosenberg J., $C^{\ast} $-algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 197-212.
  36. Schoen R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495.
  37. Schoen R., Yau S.T., Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979), 127-142.
  38. Sturm K.-T., On the geometry of metric measure spaces. II, Acta Math. 196 (2006), 133-177.
  39. Villani C., Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften, Vol. 338, Springer-Verlag, Berlin, 2009.
  40. Wylie W., Sectional curvature for Riemannian manifolds with density, Geom. Dedicata 178 (2015), 151-169, arXiv:1311.0267.
  41. Young L.S., Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), 109-124.
  42. Zeidler R., An index obstruction to positive scalar curvature on fiber bundles over aspherical manifolds, Algebr. Geom. Topol. 17 (2017), 3081-3094, arXiv:1512.06781.
  43. Zhang H.-C., Zhu X.-P., Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom. 18 (2010), 503-553, arXiv:0912.3190.

Previous article  Next article  Contents of Volume 17 (2021)