Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 203 -- 217

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EXISTENCE THEORY AND HYERS-ULAM STABILITY FOR A COUPLE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

S. Kouachi and A. Guezane-Lakoud

Abstract. We discuss the existence and uniqueness of solutions for a coupled system of fractional differential equations by the help of some fixed point theorems. Further, we investigate the Hyers-Ulam stability results for the proposed problem. An example is also included to illustrate the established results.

2010 Mathematics Subject Classification: 34A08, 26A33.
Keywords: Coupled system of FDEs, Existence and uniqueness, Hyers-Ulam stability, Fixed point theorem.

Full text

References

  1. R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive Solutions of differential difference and integral equations, Kluwer Academic Publisher, Boston, 1999. MR1680024. Zbl 1157.34301.

  2. B. Ahmed and J. J. Nieto, Anti-periodic fractional boundary value problems, Computers Mathematics with Applications, vol. 62 no. 3 (2011), 1150--1156. MR2824704.

  3. B. Ahmed, J. J. Nieto and J. Pimentel, Some boundary value problems of fractional differential equations and inclusions, Computers Mathematics with Applications , Vol. 62 no. 3 (2011), 1238--1250. MR2824711. Zbl 1228.34011.

  4. A. Ashyralyev, Y.A. Sharifov, Existence and uniqueness of solutions for the system of nonlinear fractional differential equations with nonlocal and integral boundary conditions, Abstr Appl Anal, 2012, Article ID 594802, 14pp. MR2947722. Zbl 1246.34004.

  5. R. I. Avery and A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Computers Mathematics with Applications , vol. 42, no. 35 (2001), 313--322. MR1837993. Zbl 1005.47051.

  6. D. Amanov, A. Ashyralyev, Initial boundary value problem for fractional partial differential equations of higher order. Abstract. Appl. Anal. (2012). doi. 10.1155/2012/973102. MR2947751. Zbl 1246.35201.

  7. A. Ashyralyev, A note on fractional derivatives and fractional powers of operators. J. Math. Anal. Appl. 357(1) (2009), 232--236 MR2526823. Zbl 1175.26004.

  8. A. Ashyralyev, A well-posedness of fractional parabolic equations. Bound Value Probl. (2013). doi. 10. 1186/1687-2770-2013-31. Zbl 1283.65067.

  9. A. Ashyralyev, F. Dal, Finite difference and iteration methods for fractional hyperbolic partial differential equations with the Neumann condition. Discrete Dyn. Nat. Soc. (2012). doi. 10. 1155/2012/434976.

  10. A. Ashyralyev, B. Hicdurmaz, A note on the fractional Schrodinger differential equations. Kybernetes 40 (5-6) (2011), 736--750. MR2856606.

  11. A. Ashyralyev, Z. Cakir, FDM for fractional parabolic equations with the Neumann condition. Adv. Differ. Equ. (2013). doi. 10. 1186/1687-1847-2013-120. MR3064002. Zbl 1380.65142.

  12. Z. Bai, On positive solutions of nonlocal fractional boundary value problem, Nonlinear Analysis, 72, no. 2 (2010), 916--924. MR2579357.

  13. Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311 no. 2 (2005), 495-505. MR2168413.

  14. B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J. J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Applied Mathematics and Computation, 187, no. 1 (2007), 79--88. MR2323557. Zbl 1120.34323.

  15. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985. MR0787404.

  16. L. J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. Amer. Math. Soc. 29 (1971), 525--536. MR0287117. Zbl 0222.34061.

  17. A. Guezane-Lakoud and R. Khaldi, Solvability of two-point fractional boundary value problem, The Journal of Nonlinear Science and Applications, 5 (2012), 64-73. MR2909240. Zbl 0700798.

  18. A. Guezane-Lakoud and R. Khaldi, Positive solution to a higher order fractional boundary value problem with fractional integral condition, Romanian Journal of Mathematics and Computer Sciences, 2 (2012), 28--40. MR3046635. Zbl 1313.34007.

  19. DH. Hyers, On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. MR0004076.

  20. S.M. Jung, On the Hyers-Ulam stability of functional equations that have the quadratic property. J.Math.Appl. 222 (1998), 126--137. M1623875. Zbl 0928.39013.

  21. S.M. Jung, Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 19 (2006), 854--858. MR2240474.

  22. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, The Netherlands, 2006. MR2218073. Zbl 1092.45003.

  23. V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis, 69 (8) (2008), 677--2682. MR2446361. Zbl 0700798.

  24. T. Li, A. Zada, S. Faisal, Hyers-Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl. 9 (2016), 2070--2075. MR3470375. Zbl 0700798.

  25. K.S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, John Wiley, New York, 1993. MR1219954. Zbl 0789.26002.

  26. M. Obloza, Hyers-Ulam stability of the linear differential equations. Rocz. Nauk. Dydakt. Prace Math. 13 (1993), 259--270. MR1321558.

  27. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering 198, Academic Press, San Diego, Calif, USA, 1999. MR1658022.

  28. T.M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72 (1978), 297--300. MR0507327. Zbl 0398.47040.

  29. SM. Ulam, Problems in Modern Mathematics. Wiley, New York (1964). MR0280310.

  30. C. Urs, Coupled fixed point theorems and applications to periodic boundary value problems. Miskolc Math. Notes 14 (1) (2013), 323--333. MR3070711. Zbl 1299.54124.

  31. K. Shah, R.A. Khan,Study of solution to a toppled system of fractional differential equations with integral boundary, Int. J. Appl. Comput. Math. 3 no. 3 (2017), 2369--2388. MR3680706. Zbl 1397.340268.

  32. J. R. L. Webb and G. Infante. Positive solutions of nonlocal boundary value problems involving integral conditions. NoDEA Nonlinear Differential Equations Appl. 15 no. 1-2 (2008), 45--67. MR2408344. Zbl 1148.34021.

  33. B. Xu, J. Brzdek, W. Zhang, Fixed point results and the Hyers-Ulam stability of the linear equations of higher orders. Pacific J. Math. 273 (2015), no. 2, 483-498. MR3317776. Zbl 1319.39018.

  34. A. Yakar, M.E. Koksal, Existence results for solutions of nonlinear fractional differential equations source. Abstr. Appl. Anal. 2012, Art. ID 267108, 12 pp. MR2926887.



S. Kouachi
Laboratory of Advanced Materials,
Faculty of Sciences, Badji Mokhtar-Annaba University
P.O. Box 12, 23000 Annaba, Algeria.
e-mail: sa.kouachi@yahoo.fr


A. Guezane-Lakoud
Laboratory of Advanced Materials,
Faculty of Sciences, Badji Mokhtar-Annaba University
P.O. Box 12, 23000 Annaba, Algeria.
e-mail: a_guezane@yahoo.fr

http://www.utgjiu.ro/math/sma