Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 341--354

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

VARIATIONS ON THE THEME EULER ANGLES

Clementina D. Mladenova and Ivaïlo M. Mladenov

Abstract. We discuss different parameterizations of the Lie group SO(3). The well-known Rodrigues formula describes the three dimensional orthogonal matrices in terms of their axes and angles of rotation. In particular, an arbitrary SO(3) element can be described by two real parameters and one angle. In [5] an alternative to Rodrigues representation in which an arbitrary rotation is expressed in terms of two angles and one real parameter is derived. This is done via the Cayley map applied to the canonical form of the so(3) matrices. The relationships between the novel parameterization, the classical Rodrigues representation and the extended SO(3) vector parameterization are established. The composition law in the new coordinates is derived for the composition of two regular rotations. In this paper we cover all possible scenarios for the composition law, including the cases when at least one of the composed matrices is a half-turn. To do this the extended vector-parameter composition law in SO(3) is used.

2010 Mathematics Subject Classification: 70B10; 70B15; 22E60; 22E70
Keywords: Lie algebras; Lie groups; rigid body kinematics; parameterizations; rotations; vector-parameter.

Full text

References

  1. D. Brezov, C. Mladenova and I. Mladenov, Vector decompositions of rotations, J. Geom. Symmetry Phys. 28 (2012), 59-95. MR3114816. Zbl 1291.15070.

  2. J. Dai, Euler - Rodrigues formula variations, quaternion conjugation and intrinsicconnections, Mech. and Machine Theory 92 (2015), 144-152. doi: 10.1016/j.mechmachtheory.2015.03.004.

  3. V. Donchev, C. Mladenova and I. Mladenov, On vector parameter forms of \textupSU(1,1), \textnormalSL(2,\R) and their connection to \textupSO(2,1), Geom. Integrability & Quantization 17 (2016), 196-230. Zbl 1402.22023.

  4. V. Donchev, C. Mladenova, I. Mladenov, On the compositions of rotations, AIP Conf. Proc. 1684 (2015), 1-11. doi: 10.1063/1.4934315.

  5. V. Donchev, C. Mladenova and I. Mladenov, Some alternatives of the Rodrigues axis-angle formula, C. R. Acad. Bulg. Sci. 69 (2016), 697-706. MR3559577. Zbl 1402.22023.

  6. F. Fedorov, The Lorentz Group (in Russian), Nauka, Moscow 1979. MR575165. Zbl 0509.22012.

  7. R. Gilmore, Relations among low-dimensional simple Lie groups, J. Geom. Symmetry Phys. 28 (2012), 1-45. MR3114813. Zbl 1317.22005.

  8. J. Kuipers, Quaternions and rotation sequences, Geom. Integrability & Quantization 1 (2000), 127--143. MR1758157. Zbl 0993.53005.

  9. I. Mladenov, Saxon-Hutner theorem for periodic multilayers, C. R. Acad. Bulg. Sci. 40 (1987), 35-38. MR0940050. Zbl 0646.34053.

  10. C. Mladenova, An approach to description of a rigid body motion, C. R. Acad. Sci. Bulg. 38 (1985), 1657-1660. Zbl 0588.70006.

  11. C. Mladenova, A contribution to the modeling and control of manipulators, J. Intell. Rob. Syst. 3 (1990), 349-363. doi: 10.1007/BF00439423.

  12. C. Mladenova, Group theory in the problems of modeling and control of multi-body systems, J. Geom. Symmetry Phys. 8 (2006), 17-121. MR2336855. Zbl 1121.70007.

  13. C. Mladenova and I. Mladenov, Vector decompositions of finite rotations, Rep. Math. Phys. 68 (2011), 91-107. MR2846214. doi: 10.1016/S0034-4877(11)60030-X.

  14. A. Müller, Group theoretical approaches to vector parameterization of rotations, J. Geom. Symmetry Phys. 19 (2010), 43-72. MR2674961. Zbl 1376.70007.



Clementina D. Mladenova
Institute of Mechanics
Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Block 4
Sofia 1113, Bulgaria
e-mail: clem@imbm.bas.bg

Ivaïlo M. Mladenov
Inst. Biophys. & Biomed. Eng.
Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Block 21
Sofia 1113, Bulgaria
e-mail: mladenov@bio21.bas.bg


http://www.utgjiu.ro/math/sma