Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 368.10003
Autor: Erdös, Paul
Title: Problèmes extremaux et combinatoires en théorie des nombres (rédigé par Jean-Louis Nicolas). (Extremal problems and combinatorics in number theory) (In French)
Source: Sémin. Delange-Pisot-Poitou, 17e Année 1975/76, Théor. des Nombres, Groupe d'Étude; Fasc. 2, Exposé G7, 5 p. (1977).
Review: [For the entire collection see Zbl 345.00007.]
Most of the problems posed in this French paper also appear in the collection discussed in the previous review. One problem not in the above collection is the following. Let 1 \leq a1 < a2 < ... < ak \leq n be a sequence of k integers in which one cannot find r numbers a1 which are pairwise relatively prime. Then one obtains the largest possible value of k by considering all numbers which have at least one prime factor \leq pr-1, where 2,3,..., pr-1 are the first r-1 prime numbers. The case r = 2 is well known.
Reviewer: I.Anderson
Classif.: * 11-02 Research monographs (number theory)
11B99 Sequences and sets
00A07 Problem books
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag