Academic Editor: Narcisa C. Apreutesei
Copyright © 2010 Stevo Stević and Sei-Ichiro Ueki. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Let 𝔹 denote the open unit ball of ℂn. For a holomorphic self-map φ of 𝔹 and a holomorphic function g in 𝔹 with g(0)=0, we define the following integral-type operator: Iφgf(z)=∫01ℜf(φ(tz))g(tz)(dt/t), z∈𝔹. Here ℜf denotes the radial derivative of a holomorphic function f in 𝔹. We study the boundedness and compactness of the operator between Bloch-type spaces ℬω and ℬμ, where ω is a normal weight function and μ is a weight function. Also we consider the operator between the little Bloch-type spaces ℬω,0 and ℬμ,0.