Departamento de Ciencias Básicas, Análisis Matemático y sus Aplicaciones, UAM-Azcapotzalco, Avenida San Pablo 180, Col. Reynosa Tamaulipas, 02200 México, DF, Mexico
Copyright © 2011 Jorge Alfredo Esquivel-Avila. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We characterize the global and nonglobal solutions of the Timoshenko equation in a bounded
domain. We consider nonlinear dissipation and a nonlinear source term. We prove blowup of
solutions as well as convergence to the zero and nonzero equilibria, and we give rates of decay to the
zero equilibrium. In particular, we prove instability of the ground state. We show existence of global
solutions without a uniform bound in time for the equation with nonlinear damping. We define and
use a potential well and positive invariant sets.