Copyright © 2012 Lijun Pan and Jinde Cao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper is devoted to exponential synchronization for complex dynamical networks with delay and impulsive effects. The coupling configuration matrix is assumed to be irreducible. By using impulsive differential inequality and the Kronecker product techniques, some criteria are obtained to guarantee the exponential synchronization for dynamical networks. We also extend the delay fractioning approach to the dynamical networks by constructing a Lyapunov-Krasovskii functional and comparing to a linear discrete system. Meanwhile, numerical examples are given to demonstrate the theoretical results.