Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 387857, 15 pages
http://dx.doi.org/10.1155/2012/387857
Research Article

Track Irregularity Time Series Analysis and Trend Forecasting

1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

Received 27 August 2012; Revised 27 October 2012; Accepted 27 October 2012

Academic Editor: Wuhong Wang

Copyright © 2012 Jia Chaolong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.