Copyright © 2012 Liping Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Peer-to-Peer (P2P) botnets have emerged as one of the most serious threats to Internet security. To effectively eliminate P2P botnets, in this paper, the authors present two novel dynamical models to portray the process of formation of P2P botnets, one of which is called microlevel model, the other is called macrolevel model. Also, the stability of equilibria is investigated along with the analysis of how to prevent the P2P botnet. Furthermore, by analyzing the relationship between infection rate and the proportion of the hosts with countermeasures, we obtain the mathematical expressions of effective immune regions and depict their numerical simulations. Finally, numerical simulations verify the correctness of mathematical analysis. Our results can provide the guidance for security practitioners to defend and eliminate P2P botnet at a cost-effective way.