Fixed Point Theory and Applications
Volume 2009 (2009), Article ID 369215, 23 pages
doi:10.1155/2009/369215
Research Article

A General Iterative Method for Solving the Variational Inequality Problem and Fixed Point Problem of an Infinite Family of Nonexpansive Mappings in Hilbert Spaces

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Received 3 November 2008; Accepted 16 January 2009

Academic Editor: Anthony Lau

Copyright © 2009 Rabian Wangkeeree and Uthai Kamraksa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce an iterative scheme for finding a common element of the set of common fixed points of a family of infinitely nonexpansive mappings, and the set of solutions of the variational inequality for an inverse-strongly monotone mapping in a Hilbert space. Under suitable conditions, some strong convergence theorems for approximating a common element of the above two sets are obtained. As applications, at the end of the paper we utilize our results to study the problem of finding a common element of the set of fixed points of a family of infinitely nonexpansive mappings and the set of fixed points of a finite family of k-strictly pseudocontractive mappings. The results presented in the paper improve some recent results of Qin and Cho (2008).