Journal of Applied Mathematics
Volume 2012 (2012), Article ID 638546, 12 pages
http://dx.doi.org/10.1155/2012/638546
Research Article

A Direct Eigenanalysis of Multibody System in Equilibrium

1School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
2School of Aerospace, Tsinghua University, Beijing 100084, China

Received 4 September 2011; Accepted 2 November 2011

Academic Editor: Massimiliano Ferronato

Copyright © 2012 Cheng Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents a direct eigenanalysis procedure for multibody system in equilibrium. The first kind Lagrange’s equation of the dynamics of multibody system is a set of differential algebraic equations, and the equations can be used to solve the equilibrium of the system. The vibration of the system about the equilibrium can be described by the linearization of the governing equation with the generalized coordinates and the multipliers as the perturbed variables. But the multiplier variables and the generalize coordinates are not in the same dimension. As a result, the system matrices in the perturbed vibration equations are badly conditioned, and a direct application of the mature eigensolvers does not guarantee a correct solution to the corresponding eigenvalue problem. This paper discusses the condition number of the problem and proposes a method for preconditioning the system matrices, then the corresponding eigenvalue problem of the multibody system about equilibrium can be smoothly solved with standard eigensolver such as ARPACK. In addition, a necessary frequency shift technology is also presented in the paper. The importance of matrix conditioning and the effectiveness of the presented method for preconditioning are demonstrated with numerical examples.